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Managing error has become an increasingly central and contested arena within data science work. While 
recent scholarship in artificial intelligence and machine learning has focused on limiting and eliminating 
error, practitioners have long used error as a site of collaboration and learning vis-à-vis labelers, domain 
experts, and the worlds data scientists seek to model and understand. Drawing from work in CSCW, STS, 
HCML, and repair studies, as well as from multi-sited ethnographic fieldwork within a government 
institution and a non-profit organization, we move beyond the notion of error as an edge case or anomaly 
to make three basic arguments. First, error discloses or calls to attention existing structures of collaboration 
unseen or underappreciated under ‘working’ systems. Second, error calls into being new forms and sites of 
collaboration (including, sometimes, new actors). Third, error redeploys old sites and actors in new ways, 
often through restructuring relations of hierarchy and expertise which recenter or devalue the position of 
different actors. We conclude by discussing how an artful living with error can better support the creative 
strategies of negotiation and adjustment which data scientists and their collaborators engage in when faced 
with disruption, breakdown, and friction in their work.   
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1 INTRODUCTION 

”The Foundations of AI are riddled with error,” writes WIRED journalist Will Knight [57], noting 
that widely used artificial intelligence (AI) datasets such as ImageNet are erroneous because they 
either contain test datasets overrepresenting certain populations, objects, or languages; or low-
quality training datasets produced by underpaid and disinterested crowd workers. Natural 
Language Processing (NLP) experts Emily Bender et al. have similarly critiqued the rise of large 
language models, noting that many are built on internet datasets which skew toward younger 
populations, white men, and the Global North [12]. Gordon et al. describe the source of low-
quality training datasets as noise and note that one way to ameliorate noise is through a strategy 
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of aggregation that packages discrepant annotator perceptions into “a single ground truth label” 
[38]. They recommend that data science teams pay attention to the “messy realities of our lives” 
by embracing the “contestation, disagreement, and deliberation” of annotation practices that more 
fully represent real-world behavior. 

There is much to embrace in this line of critique. A proper and public accounting of error is 
essential to a long overdue reckoning, now underway, with the fallibility and limits of AI 
systems.  This accounting includes recognition of how errors may stack or layer: that there are 
systematic rather than randomly distributed arrangements of error which collectively produce 
patterns of unequal effect in the world; and that the accumulated weight of prior stackings of 
error has contributed significantly to the racialized, gendered, classed, etc. configurations of the 
world [19][32] [34] [82] [86] [98].  From this vantage, the much recognized but imprecisely 
defined problems of bias may be no more and no less than the patterned outcomes of an 
accumulated and unequal history of error.  As Meredith Broussard has recently argued, errors are 
not just accidents [20]. Similarly, Ruha Benjamin asserts that we often think about racism “as an 
aberration, a glitch, an accident, an isolated incident, a bad apple in the backwoods and outdated” 
[13]. But a glitch is rarely ‘just a glitch.’  

One response to this situation, commonly adopted within the machine learning (ML) 
community, is to double down on the accuracy of labels, and find new and more careful ways of 
testing models which build a stronger correspondence between modeled outputs and their real-
world counterparts. A recent Science article, for instance, documents how ML practitioners have 
attempted to address the failures of models by designing tougher benchmarks (e.g., using different 
source imagery for training and testing data) [79], and new evaluation metrics which reward a 
model’s ability to perform well against several benchmarks, attuned variously to the “accuracy, 
speed, memory usage, fairness, and robustness” of models [65]. These methods focus on 
eliminating errors by deriving a “correct” label most able to mimic the world “out there”.  

These are important and necessary efforts. Attending to error is both essential for the 
refinement of existing systems (especially where and when they tip in systematic and socially 
consequential ways) as well as a much-needed acknowledgment of modesty and fallibility, built 
around a forthright accounting of what AI can and cannot do in the world.  But to conceive of 
error solely as an obstacle or impediment to an error-free machine learning, or to focus only on 
the outcomes (including highly negative ones) of these processes, risks reifying the ideal of a 
perfect(ed) AI that is placeless, oddly people-less—an ideal we believe is false.  This imagining 
also misses out on the work of error - the value of error as a site for ongoing collaboration and 
negotiation within ML work, and a host of concrete questions and challenges that turn out to be 
essential to how real-world ML systems function.   

This paper addresses some specific problems of error at two distinct stages of the ML cycle: 
(1) data preparation and (2) model building and evaluation. In each stage, we consider two such 
errors: label error and generalization error. Label error arises when the assigned labels are 
different or discrepant from ground truth data [106]. For the purposes of this paper, we focus on 
how practitioners manage label errors during the manual labeling and inference of images. 
Machine learning researchers typically view label error as resulting from a lack of clarity in 
annotation tasks [33]; ambiguities of input or output data [33]; variations of judgment (as well as 
expertise); and the value systems and subjectivities of human annotators [81][106]. To address 
these perceived problems, they have developed noise-robust or tolerant algorithms to handle label 
errors [76]; created specific label requirements to avoid misinterpretation or manually checked 
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for repeated errors in training datasets [15]; and have used confidence learning on label quality 
to search for errors and train on clean data [78], among other solutions.  

Generalization error occurs when a model becomes overfitted, adapting to the conditions of 
its training data in a way that makes it unable to perform well with unseen data. For instance, a 
ML model trained to classify wheat crops in South Africa might not do well with smallholder 
wheat crops in Ethiopia because it is trained to recognize the specific features and location of 
commercial-scale crops instead. Generalization error impacts how a single machine learning 
model can be flexibly and adaptively used across different datasets, thus, practitioners have 
developed a variety of measures to address it. Practitioners use a variety of regularization 
techniques which discourage the model from becoming too embedded in the particularistic details 
of training sets, or train the model on more (and more varied) examples. More recently, 
advancements in deep learning have allowed practitioners to introduce adversarial data or noise 
into training data to make the model more robust to noise from new data sets [59][88].  

The above measures show how ML practitioners aim to resolve errors by either developing 
technical measures to control and measure errors or embracing the collection of more data as a 
way to limit and forestall errors. As such, the focus of ML practitioners in both academia and 
industry has been to improve the quality and range of training data. This work follows a ‘limit 
and eliminate’ approach, in which the value of errors is entirely negative; error functions first and 
foremost as an obstacle to be overcome, in pursuit of ML models that correspond more accurately and 
comprehensively to the conditions of a complex world.   

But this perspective misses other aspects of the important work that error does, especially in 
collaborative work settings. We now consider how errors provide opportunities for data science 
experts and their collaborators to do three things.  First, errors reveal existing structures of 
collaboration that go unseen or unappreciated within supposedly working systems. Second, 
errors animate new forms and sites of collaboration (including, sometimes, new actors). Lastly, 
errors rework old sites and actors in new ways, by restructuring relations of hierarchy and 
expertise that may alternately recenter or devalue the position of different actors. Errors show us 
how actors come together to negotiate, collaborate, and repair inherently glitchy and uneven 
systems.  

In this paper, we will show how errors in data science drive social interactions and 
collaborative networks that reconfigure and reposition actors and their knowledge practices. 
More specifically, we show how errors are identified (or not identified) and whose estimations of 
error are ultimately heeded and addressed. Furthermore, we show how errors identified during 
data preparation are inextricably tied to model building and evaluation. In doing so, we illustrate 
that the stages of ML development are never wholly separated. We ask the following questions: 
How is error understood in ML? How is it differently perceived and managed by modelers, 
domain experts, and annotators?  How do groups and teams, near and far, collaborate around 
errors, determine which errors are acceptable, and decide which ones are to be fixed?  Under what 
conditions are errors identified, negotiated, and repaired, and under what conditions are they 
simply accepted and lived with?  

We draw from ethnographic examinations of two sites to make our case. The first is a 
government research institution in Indonesia, working with local mappers to integrate data 
science into national mapping efforts. The second is a North American non-profit organization 
working with data labelers in the Middle East to develop open-access machine learning datasets 
and models for the purpose of vaccine distribution. Through closely thinking with their work, we 
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illuminate how organizations address errors, revealing the deeply sociotechnical nature of error 
management efforts [1].  

In addition to thinking through how ML practitioners limit and eliminate error, we depict 
three alternative ways of conceptually engaging with error: errors as revealing existing 
collaborations, initiating new collaborative structures, and reworking collaborative relations and 
hierarchies. We argue that errors are navigated differently by, and have varied impacts on, the 
actors involved. When our interlocutors treat errors only as obstacles to be overcome, they 
reinforce epistemic, and workplace hierarchies between scientific professionals and “lowly” paid 
technicians or annotators. Approaches that instead view errors as sources of information or new 
patterns (as an ‘occasion’ for learning, in the educational philosophy of John Dewey [30] [31]) 
may support forms of collaboration across domain expertise and data scientists that allow for 
unexpected possibilities – both within data practice, and vis-à-vis the wider worlds that data 
practice and AI touches.  

The sections that follow begin by reviewing technical literature on label error and 
generalization error, interweaving findings from social science literature on error in 
technoscience and ongoing CSCW and HCI literature on breakdown, maintenance, repair, and 
the emergent field of human-centered machine learning (HCML). We describe our research 
methods and provide two case studies that illustrate the multifarious ways organizations and 
experts respond to generalization and label errors. We conclude by discussing the implications of 
taking error seriously as a central site of data science practice, what an artful living with error 
would entail, and error’s broader impact on CSCW research and practice.    

2 LITERATURE REVIEW 

2.1 Limit and Eliminate: Machine Learning and the Problem of Error 

Machine learning (ML) practitioners have long been confronted with the problem of error: the 
myriad glitches, breakdowns, and failures which challenge the basic work practices of data 
scientists and limit the effectiveness of and confidence in their results. Errors can result from the 
misclassifications of target variables, such as a ML model mistaking trees for buildings. Errors can 
also prevent ML models from generalizing across a variety of datasets, either because the training 
data differs greatly from the “real-world” data, or because the data itself is dynamic and regularly 
updated (e.g., email content). 

Within this set, certain kinds of errors have been called out for attention. The first is label 
error. Label error occurs when annotators produce “noisy labels” in training data. Practitioners 
point out that these noisy labels are common in computer vision, given that while there are 
“standardized techniques” to clean tabular data, they are “less suited for perception e.g., pixel of 
an image” [[55]: 1]. ML practitioners view label error as a result of disagreement and variance in 
classifications among labelers. There is widespread acknowledgment among practitioners that 
such noisy labels are present not only within training datasets, but also test datasets [15][78]. 
Various attempts have been made to reduce such noise, driven by the fear that noisy labels 
compromise the quality of the training dataset itself [44]. To improve the quality of data, ML 
practitioners have primarily adopted a majority vote to decide on a single label [25]. Here, experts 
labeling pixels vote for what their labels represent in the event of a disagreement. In our second 
case study, a group of remote sensing scientists and data scientists use a majority vote to decide 
whether a building roof blocked by trees ought to be included as a label. A majority vote would 
decide if a label belonged.  
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Majority vote is not foolproof. ML practitioners, both within HCI and the larger computing 
community, argue that the majority vote is used “to construct a ground truth without preserving 
information about label distributions.” [[47]:4]. Various human-centered machine learning 
measures to retain the distribution of labels include relying on soft labels (probabilistic labels 
instead of a single definite label) [47] and ensuring intra-annotator consistency by paying 
attention to the dominant labels an annotator would provide when classifying the same item 
repeatedly [38]. Davani et al. have embraced both disagreement between and inconsistency within 
annotators because they argue that such variance provides more “flexibility” and “better estimates 
for uncertainty” to model the real-life behavior of annotations [25]. In sum, ML practitioners are 
not only aware of the need to control the perceptions of annotators by aggregating or predicting 
their disagreements but have embraced the notion that there are multiple ground truths which 
could yield better-performing models. Our work builds from such technically minded strategies 
by showing how ML practitioners harness disagreement to embrace uncertainty and multiplicity 
in perceptions of error. 

A second, more commonly recognized, kind of error is generalization error. It appears when 
models are brought into production. When models are tested on “real-world” data, they might be 
unable to grapple with newly ingested data. Hullman et al. refer to the problem of generalizability 
as “methods working well under certain conditions but fail[ing] when applied to new problems 
or in the world” [47]. While generalization errors may be caused by multiple factors ranging from 
“inadequate feature representation” to “small and imbalanced datasets”, we hone in on the 
phenomenon of data drift. Data drift occurs when there is a change in the relationship between 
input and output data. For instance, a data scientist might encounter a natural drift in data such 
as mean temperatures changing with the season [73], and must account for such shifts in order 
to increase the model’s generalizability. As generalization error deals directly with the extent to 
which an algorithm can be deployed to do the same task on different datasets, practitioners have 
developed a wide array of measures to limit the generalization error rate.  

Practitioners typically use a variety of regularization techniques to approach these problems. 
These techniques include ensuring that a model is not overtrained, or does not have too many 
features, factors which make it difficult for a model to adapt to unseen data.  Another common 
regularization technique is data augmentation, which makes slight modifications to training 
datasets such as rotating or flipping images, in order to make them more complicated and suitable 
for complex models [83]. In effect, data augmentation increases the size of the training dataset, 
and is considered by practitioners as a necessary step for deep learning models in particular [94]. 
Augmentation would be followed by the reweighting of samples in training data so as to prioritize 
the newly added training data. Other options include using a variety of machine learning models 
for different segments of the training data, or even changing the prediction target [35].  

The responses to both generalization and label errors regard poor ML model performance as 
an isolated problem, one remedied through tinkering with datasets and model architecture. This 
tinkering can include statistical and mathematical responses such as including new uncertainty 
and model evaluation metrics, or efforts to reduce model parameters to minimize or reduce 
overfitting. Yet such responses often frame errors as anomalous “edge” events, rather than as 
occasions collaboratively managed by data scientists, domain experts, and data annotators [89]. 
Domain experts, especially, are often portrayed as playing a subsidiary and passive ‘informant’ 
role in the design and operation of ML systems [33]. Furthermore, statistical and data science 
measures reify the “limit and eliminate” approach to error, rather than paying attention to the 
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generative value error provides by transforming how we know a particular phenomenon, learn 
who to work with, and who to be instructed by.   

2.2  Negotiating Error: From Elimination to Repair 

A second approach to the problem of error may be found in a growing body of work in CSCW, 
HCI, science and technology studies (STS), and critical data studies. In human-centered machine 
learning (HCML) [4][5] [69] [70][71] [72], scholars have examined how data science has 
differential impacts on marginalized populations, drawing attention to the relational aspects of 
technology and society while decentering its deterministic effects in projects of modernity and 
development. Centrally, Stevie Chancellor has recommended embracing failure as part of a more 
balanced and holistic approach to data science. Instead of emphasizing “technical conceptions of 
performance through quantitative metrics, such as evaluating error rates and efficiency,” a 
sociotechnical perspective on failure encourages technologists to grapple with who is impacted 
by the failures of AI systems and how they navigate such breakdowns [23].  For instance, it is 
found that medical professionals lose trust in AI systems that fail to return clinically-relevant 
results to provide a diagnosis on the fly, even if the same system is relevant for other clinical 
cases [[21] cited in [23]]. As such, we understand error and allied concepts such as breakdown 
and failure as a new analytic to understand how teams, groups, and organizations reorganize in 
the face of error, and thus repair what has stopped functioning as intended. 

 
2.2.1 Error as a site of hierarchy and power dynamics. Recent work on algorithmic bias, data 

annotation, and AI failures have shown that the identification and disclosure of error rely on the 
power relations and hierarchies of a workplace. CSCW scholars Taylor et al. discuss how nurses 
who are well-equipped to identify patient safety errors are often disincentivized from speaking 
up due to asymmetric power relations and strict hierarchies between physicians and nurses. They 
found that nurses desire to displace the responsibility of error communication to intelligent 
technologies such as robots, seeing them as “neutral third part[ies]” [[100]: 221:3].   

In other workplace settings, Miceli et al. argue that the failures of data-driven technologies 
have often been narrowed down to a problem of bias by annotators who are often employed on a 
precarious basis [68]. As such, bias is often resolved by scrutinizing the quality of training data, 
instead of taking account of the “labor conditions, institutional practices, infrastructures, and 
epistemological stances encoded into datasets”. Nithya Sambasivan and Rajesh Veeraraghavan 
have shown how AI developers may moralize error (and disclaim responsibility), characterizing 
field workers collecting training data as lazy, corrupt, and careless, further justifying the use of 
surveillance, automated checking tools, and cross-verification to eliminate error in training data 
[91].  

Error is also differently perceived across different kinds of experts and professionals, creating 
friction between AI systems and the practices and material context of domain experts. For 
instance, Jung et al. studied how craft brewers using a digitized brewing system found it difficult 
to understand abstract digital values, sought less optimal target outputs, and preferred working 
more flexibly with their materials [53]. CSCW scholars have also discussed how domain experts 
are included in the process of ML development to reinforce the myth of AI systems as functioning, 
seamless systems [54] [58] [75]. Raji et al. in particular have noted a global push to include a 
variety of domain experts in AI tool development for COVID-19 in order to democratize the 
development of AI, with little to no concern placed on the actual functionality of the AI tools 
themselves [84]. Hence, while domain experts ranging from data annotators to specialized 
professionals play an important role in identifying errors specific to a field or discipline, they are 
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sometimes regarded as lowly skilled, non-technical, or mere participants in ML development. In 
sum, these CSCW and HCML readings of error point to how failures and breakdowns are sites to 
study relations of hierarchy and expertise in data science collaborations; they do the work of 
making known power dynamics and resistance, as well as varying definitions of precision and 
accuracy. 
  

2.2.2 Error as a site of collective work.  A second line of work in STS and the social sciences 
has shown how errors are sites for collaborative, collective, and coordination work [16][22] [37], 
[42][52] [45]. Historian of science Lorraine Daston argues that diagnosing, eliminating, or—at a 
minimum— “taming” errors has been a central feature of modern science, constructing vigilant 
scientific subjects [26]. This vigilance is trained not through instituting individual perceptions, 
but by “collective seeing and naming” made possible by standardized descriptions of natural 
phenomena [27].  

The management of error is also distributed throughout a network of practitioners and 
technologies. Sociologist of science and technology Donald MacKenzie’s groundbreaking study 
of U.S. missile guidance in mid-century America showed how errors in ballistic missile guidance 
technologies were addressed through conflict and collaboration between the laboratories and 
corporations variously headed and directed by technologists, military members, and political 
figures [63]. In later work on computer system failures, MacKenzie critiques the category of 
“computer-related accidental death” because it reduces technical failure into a self-evident 
category [64]. Instead, he reveals how system design often contributes to human error. Even in 
contexts where humans appear to be absent, such as software errors, MacKenzie argues that 
multi-causality is the rule rather than the exception.  

In a more recent context, sociologist of science Adrian Mackenzie notes how backpropagation, 
an algorithm that optimizes the connections between nodes in a neural network based on the 
error rate obtained in the previous iteration, is reinscribed in the actions of practitioners in a data 
science competition who compare the error rates of their models and iteratively optimize their 
model, thus replicating the self-adjusting optimization process commonly found within the 
algorithm [62]. In other words, the practice of machine learning itself shapes and structures the 
world these practitioners live in. 

These dynamics complicate not only who should be held to account for system breakdowns, 
but also who gets to speak on behalf of such failures and hence develop strategies for mitigating 
them. Historian of technology Rebecca Slayton has shown how a group of elite software engineers 
in the mid-twentieth century United States questioned whether the software necessary to control 
an anti-ballistic missile (ABM) system could ever be made to work without error.  

These computer scientists, including MIT’s Joseph Weizenbaum, argued that reliable software 
could not be produced without rounds of debugging, real-world testing, and revision, even in 
stable, well-understood situations. [97]. Slayton’s analysis reveals how computer scientists and 
software engineers came to be perceived by the US public as capable of speaking about the risks 
of complex computer systems, instead of independent third parties or social scientists.  

The dominance of computer engineers diagnosing and ‘speaking for’ error in AI persists. 
Recent studies of AI ethics have shown how technology companies occasionally used errors to 
explain why it is important to improve existing products and efforts to “build better”, mostly 
behind closed doors [1][84]. This makes it important, as STS and communication scholar Mike 
Ananny argues, to view algorithmic errors as “public problems” [1]. If errors are sites to expose 
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that something unjust has been done, there should be stronger efforts to “reveal communities of 
algorithmic error – people who see and diagnose errors similarly, who strive for fixes together” 
[2]. This proposal to study how communities diagnose, engage, and become the authority on 
errors aligns with our next point on how errors animate collaborative structures and repair.  

 
2.2.3 Error as a site of collaboration and repair. These insights around the complexity of 

breakdown and error are echoed in a body of CSCW work in repair studies (see for e.g., [46][49] 
[50] [87]).  As this work makes clear, breakdown is not the exception case to the normal workings 
of technical systems, but rather their ordinary mode of operation – that is, technical systems (like 
other instances of established order and stability in the world) are in practice regularly breaking 
down, and sustained only through complex and ongoing acts of maintenance and repair (which 
are nevertheless commonly rendered invisible by our predilection for other figures and moments 
– for example, design and designers, use and users [8]).  This understanding places error (and 
responses thereto) at the very center of technical process, rather than as an occasional and 
unfortunate edge case.  It also locates error as a key site of learning and innovation, and very 
often one around which multiple interests and kinds of expertise group. 

The potentially creative and collaborative nature of error is perhaps best exemplified by Klemp 
et al.’s [56] remarkable study of the role of error in jazz improvisation.  Drawing on pragmatist 
philosophy (in particular, the pedagogical theories of John Dewey [29]), the piece follows the 
consequences of a single ‘wrong’ note struck in a 1958 recording of ‘In Walked Bud’ by 
Thelonious Monk - and the complex work of repair by Monk and members of his quintet to make 
the wrong note ‘right’: that is, fit within a redefined pattern and imagination of the piece.  This 
work is deeply collaborative in nature, relying on the careful attunement and listening between 
members (itself aided by a longer history of familiarity and collaboration).  It is also essentially 
creative, and one of the principal engines by which new sounds and insights are brought into 
worlds of jazz. Responses to error in data science we believe hold a similar potential for producing 
new ways of collaborating with one another and addressing failures and ruptures in more open, 
creative, and effective ways.  

At stake in all these debates is the status of error - both as an analytic matter (how are we to 
conceive and think about error in a theoretical sense?) but far more importantly as a practical 
one: how do actors themselves encounter, make sense of, and work around error amidst the 
ongoing glitchiness and uncertainty of data science work?  How do they do this work 
collaboratively, within teams and arrangements of differently placed interests and 
expertise?  How are repairs and responses to errors effected, and how are judgments of accuracy, 
reliability, or ‘good enough-ness’ arrived at through these processes?  The following sections 
explore these questions in two separate cases: the effort to establish an error-free map amongst 
government-contracted surveyors in Indonesia and the negotiation of acceptable error rates in 
the processing and annotation of satellite imagery. 

3 METHODS AND FIELDSITES 

The two following case studies build on in-person and virtual ethnographic fieldwork and 
interviews conducted at an Indonesian government research institution (National Mapping 
Agency) in Jakarta and a North American-based non-profit organization (Starlight). It is derived 
from more than 4 years of ethnographic study conducted by the first author in three rounds: from 
the summers of 2016 to 2018, March 2019 to June 2020, and virtually from August 2021 to July 
2022. Recruitment occurred based on the first author establishing herself as a research fellow in 
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Starlight in 2021. Starlight specializes in the development of open-access machine learning 
training datasets and models. Where consent was given, the first author recorded team meetings 
and meetings with external corporate partners and tech consultants. The first author has also 
worked with a member from Starlight to ensure that the names of their organization and partners 
are anonymized and the context of their partnerships is minimized to ensure privacy.  

Prior to Starlight, the first author gained access as a research intern in several government 
research institutions in Indonesia, including the National Mapping Agency. She browsed 
government libraries, interviewed staff members, and sat in their meetings after gaining access 
with an Indonesian research permit. The first author conducted more than 100 semi-structured 
qualitative interviews in English and Bahasa Indonesia with remote sensing scientists, data 
scientists, geospatial data technicians and policymakers in Jakarta. All research interlocutors have 
been anonymized to protect their privacy. Before interviews and observation with members of 
these organizations, the first author shared a verbal informed consent form and interview 
questions.  

Since data science adoption and implementation rolled out in Indonesia’s government 
institutions over several years, the first author’s rewriting of the interview protocol happened 
several times, centered around notions of machine learning and map accuracy and perceptions of 
ground truth among scientific and technical experts. Our interview protocol in Starlight 
addressed questions of bias in machine learning models, including challenges of how to identify 
them, fix them, as well as communicate about them to clients and other partner organizations.  

The first author created memos which were then shared and discussed with the second author 
(along with fieldnotes and interview transcripts) to elaborate on emerging themes in fieldnotes 
and interview data. Our data analysis followed a grounded theory approach, tracing practices 
from how training data was made to how models were designed before arriving at the analytic 
and conceptual framework of error. Our initial themes in the memos included “social hierarchies,” 
“fuzzy landscapes,” “actual pixel boundary,” “ground truth,” and “resolution” to conceptualize 
moments when fieldwork participants were triaging to identify image classification mistakes and 
fix them. Looking through these themes, we recognized that errors were the common 
denominator holding them together. With this realization, we returned to the practitioners to 
interview them further.  Our coding and analysis went through several additional rounds, where 
themes of “precision,” “repair,” and “efficiency” were developed (and sometimes discarded or 
demoted) before arriving at the themes at work in the present paper.  

Across both large government institutions and small non-profit organizations, we wished to 
observe how organizational structures and norms of collaboration and professional hierarchy 
shaped data science practices. To navigate these different settings, the first author leveraged her 
privilege as an information scholar first, at a large R1 public university, and second, as an 
information postdoctoral fellow in an Ivy League university to access these typically tightly 
controlled organizations. On the one hand, the first author had to ensure that her access to their 
clients and partners was treated with ample care and consideration, given that some of the 
products they worked on had different extents of openness to public use and sharing. On the 
other hand, the privilege of the first author is part and parcel of the stacking and recognition of 
the hierarchy of expertise that shapes the environments in which errors are constructed and 
discussed by her interlocutors. In Indonesia, the first author’s positionality as a Singaporean 
Chinese woman both provided as well as challenged her full access to government offices on 
many fronts (the former due to her esteemed educational background in Singapore and the U.S. 
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and the latter based on her Chinese identity given longstanding racial tensions between Chinese 
and non-Chinese Indonesians). In some ways, the first author’s transnational mobility, flexibility, 
and expertise allowed her to navigate both worlds with ease, as much as it presents its perils and 
limitations.   

While the United States and Indonesia are different countries with varying norms on culture, 
technological advancements, and demographics, we found it essential to understand how these 
two collaborations apply machine learning to solve problems of resource management and 
landscape recognition in the Global South. In Indonesia, the National Mapping Agency has turned 
to data science to speed up the production of national maps since 2016. This effort began shortly 
before the National Strategy for Artificial Intelligence was established in 2020, an initiative that 
signaled the growing entanglement between state knowledge production and data science 
research. Since then, government researchers have heavily promoted the use of data science and 
AI in a range of applications, from biotechnology to environmental sciences, driven in part by 
growing fears of redundancy in the face of data-driven sciences. In 2019, Indonesian President 
Joko Widodo threatened to replace civil servants with AI. While this did not happen, a merger of 
more than 33 government research agencies in 2022 resulted in the layoff of hundreds of 
researchers, technicians, and research assistants. It is in this context of job scarcity and economic 
instability that we attempt to understand how errors in machine learning become sites to 
construct and legitimize new (and old) methods of knowledge production. 

Starlight, on the other hand, acts as an intermediary between a data annotation company we 
have named Tarik and their client, Greenworld, a US-based consultancy that supports 
development and sustainability projects. A United Nations agency has commissioned Greenworld 
to develop a building detection model that can automate the creation of high-resolution building 
maps in Dhaka, Bangladesh. In addition to Bangladesh, the data of other Global South countries 
would be included to train the same model. These high-resolution building maps were to be used 
by health professionals to plan and estimate the population size in any particular neighborhood, 
and place mobile COVID-19 and childhood vaccination clinics accordingly. Greenworld’s 
accurate, high-resolution building detection models ensured that the UN agency could quickly 
produce updated maps that would serve as proxies for population sizes. The goal is for the agency 
to know where exactly to place mobile vaccination clinics and maximize the impact and access to 
vaccines.  

4 FINDINGS 

In the following sections, we analyze how errors in data science are sites to disclose and 
reorganize structures of collaboration between differently positioned experts and data 
annotators/technicians. Our understanding draws upon existing CSCW, STS, and HCI work on 
how errors cannot be viewed simply as an obstacle to knowledge production but as an avenue for 
collective work, the enactment of hierarchy and power dynamics, and the reorganization of 
collaborations across and within organizations. Our empirical study shows how different 
institutions work with one another to identify errors, make sense of them, and decide what is 
necessary to address. Together, these two cases will show how errors reveal existing 
collaborations critical for sociotechnical systems to work, initiate new networks of relation and 
collaboration, and restructure current arrangements to either make way or further devalue the 
labor and expertise of those with lesser power. 

4.1 Building a Collective Map in Indonesia 
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Our first case follows the role of label error in an ambitious machine learning and remote sensing-
driven national remapping project in Indonesia. It begins with Bayu, an earth scientist (geodesy) 
trained in machine learning during his graduate studies at ITC Delft in the Netherlands. In his 
office near the outskirts of Jakarta, hundreds of cartographers have been trained to map Indonesia 
since 1969. At the time we spoke in 2017, Bayu was prototyping a method for automating the 
detection and mapping of buildings in Indonesia. This method would include a standardized 
machine learning model for detecting Indonesia’s buildings and assist in making the nation’s first-
ever complete and large-scale (1: 5000) topographic map. 

That afternoon, earth scientists in the mapping agency told us that Bayu’s method could 
radically speed up the production of maps - a promising contribution for a severely overstretched 
agency charged with producing accurate and effective maps across Indonesia’s more than 17,000 
islands. We were seated in one of the agency’s meeting rooms to learn about Bayu’s work, sharing 
our opinions on why machine learning mattered for the nation’s topographic maps.  

A senior official at the agency explained that as this was the first time Indonesia had made 
large-scale topographic maps, the workforce required had to be highly trained and large in 
number. Another earth scientist had heard from his colleague conducting quality control on maps 
that the subcontracted private geospatial data operators had little experience classifying features 
on high-resolution remote sensing data. With a scarcity of mappers trained to make these maps, 
Bayu believed a machine learning approach could help detect and classify buildings quicker and 
more accurately. Given this, Bayu and his research team found machine learning to be 
instrumental in easing the labor and time required to identify and classify buildings. 

After describing why machine learning was important for the nation’s maps, audience 
members watched Bayu pull up an image. It was an image of a network of data points overlaid 
on top of a satellite image. He said, “This is Light Detection and Ranging (LiDAR) data. The 
Agency has recently introduced LiDAR to data operators to help them map faster.”  

What does fast mean here? Asked one senior earth scientist. Bayu waited to answer the 
question. Instead, he explained that each LiDAR data point has three features: intensity values 
(i.e., the amount of light energy recorded), elevation values, and a return number (i.e., the total 
number of returns for a given laser pulse) recorded from a remote sensing device fitted to an 
airplane or satellite. These values, Bayu explained, were then compiled into a 3D data “point 
cloud.” This point cloud was different from a 2D pixelated satellite image because it emphasized 
features that data technicians could not observe from plain sight. Bayu showed a LiDAR point 
cloud of Germany that he had extracted from satellite imagery, drawing the eye to the yellow 
roofs that now popped in contrast to the black background.  

Still, not all the earth scientists at the table were satisfied. They probed into how such a 
network of points could guide an operator’s classification work. One of Bayu’s long-term 
collaborators in the agency, Faizah, guided the audience through how to read a point cloud. 
“Unlike a point cloud, which intuition will tell you to join together based on the proximity of dots, 
a single pixel gives too much information. Pixels make an operator imagine too 
much.”  Furthermore, with each data point, numerical information such as the elevation height 
of where the light pulse hits a particular landscape is provided to help an operator decide if data 
points should be joined. For Bayu and Faizah, the distance of data points and the information each 
point had assisted data operators in classifying features on a high-resolution satellite imagery. 
Pixels on a high-resolution imagery would have provided too much detail to operators and made 
them prone to label errors. 
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Fig. 1. This is an image of a LiDAR point cloud. Each shaded dot represents where a laser has hit the 
surface of a landscape. The different colors of the lines emanating from each dot indicate different 

elevation values. For example, the purple line represents a circle, and surrounding it are lines of a similar 
color because the elevation values of a riverbed are roughly identical (first author’s photo). 

 

4.1.1 Error initiates collaboration between senior and junior earth scientists.  

To further illustrate the significance of using LiDAR, Bayu, and Faizah continued to guide the 
audience on how to read a point cloud in two ways. First, from aerial satellite imagery, Faizah 
showed how data operators could now “see through” forest cover.  LiDAR penetrated the gaps of 
forest branches and leaves to spot the road, river, or building underneath. Second, operators could 
use the elevation value of each LiDAR point to classify features according to mapping standards. 
Since each LiDAR point had the elevation value of any object, operators could refer to the height 
of trees and confirm that a dense plot of trees they were looking at was indeed a forest. For 
instance, in Indonesia, forest cover is defined as an area of trees with >5 m height, >30% canopy 
cover, and excludes plantations, such as oil palm. True enough, when we were on site with data 
operators, operators often referred to LiDAR to confirm their vision and coordinate with others 
on hard-to-see objects. 

At this point, there were questions for Bayu on whether LiDAR could only be used to classify 
buildings. Bayu chuckled, “I prefer using LiDAR point clouds for buildings...because the roofs are 
more regular than other landscapes”. He clicked to the next slide and outlined a building’s roof 
with his index finger. Underneath his finger was red LiDAR data points around a sea of blue 
LiDAR data points. No matter where you are, the roofs of buildings are fairly similar, Bayu added.  
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Fig. 2. This is not an image of Bayu’s LiDAR data points, but it is used to illustrate what he regards as the 
edge data points of a building roof that would not have same elevation values as compared to the ground 

that sits next to it. Image credit to [10]. 

But that was only one type of building one senior earth scientist observed. Bayu pointed out 
that slums in Indonesia were challenging for his model to recognize. But he again emphasized 
that the elevation values of other building roofs would not differ much. At this point, a 
conversation ensued that brought out a larger set of questions. What exactly was a building? 
What about buildings that were blocked by vegetation? Or buildings that were too close to one 
another? When does the universality of buildings break down? And what had Bayu done to 
address this error? 

Bayu showed a point cloud that was denser than the one shown earlier. It had surfaces so 
smooth that it felt like there were barely any gaps between points. Furthermore, the data points 
were color-coded such that points with similar elevation values possess the same color. As taught 
before by Bayu, points that are close in distance to one another and have identical elevation values 
can be regarded as belonging to the same group. He pointed at the edges of a building, and we 
looked at them again. He said, I call these points, edge points.  

Bayu clicked on his slides again; this time, it showed that the space around buildings also 
possessed a different color. He called these points ground. Based on his chosen criteria that LiDAR 
points with similar elevation values belong to the same group, Bayu could now identify ground 
from non-ground data points, further allowing him to repair the problem of buildings that are too 
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close to one another (see Fig. 2. above). When training a model, Bayu explained, even a slight 
space between points could become extremely large for machinic vision.  

These images are what Bayu used to train a fully convolutional network (FCN) to classify 
point clouds into buildings. The model worked on two assumptions: First, a building’s surface 
consisted of LIDAR data points with similar elevation values. That is, all roofs had a similar height. 
Second, a building’s edges had points that did not have neighboring points on all of its sides. His 
model looped around these parameters such that it outlined the edge points of a building by itself. 
Distinguishing ground from non-ground at the level of every pixel, his model was considered by 
his superiors after the demo more precise than the data technician’s technique of classifying pixels 
by “manual visual interpretation.” Manual interpretation involves looking at the tone 
(“brightness,” “contrast”), texture (“smoothness,” “roughness”), pattern, shape, size, and 
association of different land features [66]. This type of classification hence produced a variety of 
outputs, instead of a single definite enumeration of what is perceived. The meeting concluded 
with no clear direction of whether Bayu’s method was suitable for mapping out the whole of 
Indonesia, leaving the machine learning project for national mapping an incomplete one.  

In a later interview, however, Bayu revealed that his FCN model had failed to classify features 
unique to Indonesia - a problem he attributed in part to the model’s training data being generated 
from urban northern Europe. Here is where we can see how label errors also affected the 
generalizability of the model to other places. To correct this, he attempted to add more object 
classes to the ground truth image. These included “Uncleared Land” and “Waste,” categories 
informed by his living in Jakarta, a metropolis well-known to be heavily polluted. Even though 
Bayu was initially adamant about automating the detection of buildings and ground, he had to 
add more classes to account for the complexity of “ground.” As the model began to learn new 
classes, it became apparent that the collective seeing and discussion of Bayu and the senior earth 
scientists was central to making the model work.  

Despite the presentation’s emphasis on seamless and automated mapping, we also learned a 
year later that manual interpretation remained vital to Indonesia’s topographic mapping projects 
and that Bayu’s model was not fully adopted to map Indonesia. So what happened to LiDAR data 
purchased and processed by the National Mapping Agency? They were sent to data operators 
who were tasked with smoothing the elevation values of the LiDAR point cloud to make a good 
digital elevation model, a necessary component of large-scale maps. As “raw” elevation models 
made from LiDAR have minor variations and outliers, it was the job of technicians to smooth 
these out - a notably monotonous and laborious task. Seized by frustration, operators felt that 
they were completing menial tasks.  “A machine needs to do my job!” one of them told me after 
tolerating a grueling night shift performing repetitive data cleaning and processing.   

There are three important features to be gleaned from this first case study. The first is how 
Bayu shows the smoothness and efficacy of machine learning by carefully selecting the dataset it 
was trained on and providing the right examples. Building out of the commonly held principle to 
prevent label error held by machine learning practitioners - garbage in and garbage out [44], Bayu 
showed how clean and controlled LiDAR data could promise good results.  

But simply using LiDAR data was not enough; he had to communicate how LiDAR data can 
tame aspects of label error through universalizing a definition of building and convincing senior 
earth scientists of the value of LiDAR data. In doing so, he initiated a new collaboration between 
junior and senior earth scientists, getting them to collectively see that most, if not, all, buildings 
had similar structures, using LiDAR data points. Given that accelerating the production of maps 
is an important selling point for Bayu’s audience members, his demonstration of LiDAR data 
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shows how machine learning may overcome the chronic staffing shortages of the agency and the 
magnitude of the mapping task at hand. In this way, we can view Bayu’s careful handling of error 
as initiating a new way of collectively seeing and collaboratively training a machine learning 
model that connects the earth sciences and computing.  

The second point is that even if datasets appear to disallow any form of contingency and 
ambiguity, potential errors were brought forth by heterogeneously placed experts, including 
those with more extended familiarity with the empirical worlds at hand. Consider how senior 
earth scientists were concerned about how different types of building might not be identified 
under the schema of Bayu’s edge point theory. They were not convinced that Bayu’s universal 
definition of building roofs could cover all kinds of buildings, a perspective informed by their 
training in remote sensing science. As such, from the classification of data technicians to the label 
error of Bayu, it revealed an existing collaborative structure that earth scientists with more 
experience working with remote sensing imagery could expand on potential mishaps or mistakes 
that were not yet identified.  

The third and last point is how the collaboration worked—or failed to work—when label errors 
were regarded solely as a result of a data technician’s work. Once a data technician’s judgment 
was viewed as problematic, it allowed earth scientists to develop assumptions on how data 
technicians perceived satellite imagery. While domain scientists such as Bayu were regarded as 
“trained” in harnessing the value of satellite imagery such as LiDAR, data technicians trained in 
high school were regarded as incapable of doing the same. Even when Bayu’s model did not work 
[84], and data technicians were still entrusted with the making of the map, it was Bayu’s expertise 
that added value to datasets. By accepting this logic, Bayu’s audience also accepted the premise 
that a LiDAR training dataset could overcome the error of subjective and uncoordinated human 
judgment. In other words, old actors such as geospatial data technicians were redeployed to center 
machine learning knowledge over manual annotation and labeling. When error becomes an 
obstacle, it is not only a site of conflict and tension across different sites and actors, but also a 
place for hierarchies of expertise to be made.  

4.2 Quality Control of Bangladeshi Building Detection Models  

In our second case study, we show how an interdisciplinary collaboration between private and 
non-profit organizations works to manage and correct imprecisely labeled data, revealing the 
definitionally flexible notion of “precision” in data science. Precision is an emic term that data 
scientists use to talk about label errors, especially regarding human annotation. We trace the 
evaluation of a data quality control standard that would enable a machine learning (ML) model 
to learn the specificity of Bangladesh’s landscapes while ensuring that the same model could 
recognize landscapes elsewhere. It zooms in on a moment shared between a North American tech 
consulting firm and its subcontracted workers from a North American non-profit organization 
and a data annotation company based in the Middle East. 

The collaboration we describe was oriented to nominally inclusive goals - notably the current 
lack of geodiversity in major open-source ML training datasets (creating an imbalance in the 
accuracy with which ML efforts can ‘see’ various environments - an analog, perhaps to AI’s well-
recognized bias problems along racial and other lines). Many machine learning training datasets 
for computer vision and image recognition tasks consist of places in the Global North. For 
instance, in Image Net, a commonly used image dataset for computer vision and machine learning 
applications, around 45% of the data is from the U.S., making it difficult for image classifiers to 
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perform well on landscapes of the Global South [94]. To create more geodiverse training datasets, 
the chief data scientist of Starlight developed a long-term relationship with Tarik.  

Founded in 2017, Tarik employs Middle Eastern youths and displaced refugees to become 
annotators. Tarik differentiates itself from the crowdsourced platform and freelancer work such 
as Mechanical Turk because employees work on a long-term and permanent basis with regular 
clients. Under this model, participating youths are hired to classify and provide a series of labels 
for a variety of clients, ranging from land cover class labels for non-profits like Starlight to 
detecting car trunks for automobile companies. Projects we observed throughout our fieldwork 
included, but were not exhaustive of, the labeling of clouds and annotation for building roofs in 
Bangladesh, Oman, Madagascar, the Philippines, and India.  

Starlight and Tarik are contracted to Greenworld, a US-based tech consultancy. Commissioned 
by a United Nations Agency, Greenworld aims to create a building detection model for 
Bangladesh based on annotations from Starlight and Tarik. Their main goal is to plan for the 
placement of COVID-19 and childhood vaccination clinics, with buildings serving as proxies for 
population density in low-and-middle-income countries. Greenworld is the main client in this 
partnership, while Starlight and Tarik have been contracted for their annotation services. Given 
the stakes of the project, Greenworld—in charge of building the ML model—assigned Tarik more 
than 100,000 satellite images to be annotated. More than 80 workers from Tarik were employed 
three months before the project start date in order to annotate these images. Starlight primarily 
mediated communication between Greenworld and Tarik. When asked why the Chief Data 
Scientist of Starlight gave us two reasons. First, these two organizations have different points of 
expertise and technical training. Most annotators in Tarik were focused on creating labels for an 
image, while Greenworld members honed in on the details of ML modeling. Second, and perhaps 
more importantly, Tarik belonged to a working culture that the Chief Data Scientist from Starlight 
was more familiar with, and so they could act as a cultural mediator and negotiator between 
Greenworld (GW) and Tarik. 

In a Zoom meeting in February 2022, three core team members in Starlight were on a call with 
Greenworld to review training data that would be used to train an open-source building detection 
model. After several weeks and two rounds of data annotation, Greenworld had called for the 
meeting to express concerns with the results achieved so far and advocated for a 98% accuracy 
rate for the data annotators.  

For Starlight and Tarik, 98% was extremely high in their experience – close to 10% more than 
what is usually expected of them. A Greenworld staff member overseeing the overall 
implementation of the project, Thomas, expressed his empathy with Tarik, observing that Dhaka 
was one of the densest cities on the planet. This meant that buildings were likely to be close to 
one another and difficult to distinguish from overhead satellite imagery. But he emphasized that 
they nevertheless wanted an error rate of 2%. Thomas reasoned that the map would provide a 
direct reference for population density; a near 100% accuracy for classification is needed to 
achieve the UN agency’s vision for health microplanning in Bangladesh. He pulled up a decision 
tree Greenworld had created to evaluate the labels and urged all reviewers and labelers to follow 
a systematic process in cases of uncertain attribution: 

 
“Basically, we are saying that if there is any uncertainty about [labels], we would like the user 

to go down the chain here... I do want to let you know that we want this to be as collaborative as 
possible, and we know where Tarik is coming from, and we want to help to make their product 
as accurate and appealing as possible… [But] we are looking right now at 70% accepted and a 30% 
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unaccepted rate which, you know, puts us in a tough position on the contractual side… if we are 
looking at that across the hundreds of thousands of satellite images, that’s a significant portion. 
As much as we can afford to, for the lack of better term, have a kumbaya moment here, we need 
to find out what’s workable for us as well as what is the timeline for the Tarik team to improve 
so that from a few months, or even few weeks from now, we can get at the point in time.” 

 
For Thomas (GW), the decision tree Greenworld had developed would help remove 

uncertainty when all three organizations (Tarik, Greenworld, and Starlight) evaluated Tarik’s 
annotations. Typically, a team of experienced annotators in Tarik reviewed all annotations. This 
would be followed by a random sample picked and reviewed by three core members of Starlight. 
Finally, Greenworld would evaluate the annotated dataset reviewed by both Tarik and Starlight. 
In the meeting, Thomas claimed that the errors Tarik made would delay timelines. The meeting 
revealed the unspoken hierarchy in this collaboration—only Greenworld could develop a decision 
tree to standardize the quality of a good label. According to their tree, Greenworld had evaluated 
that 30% of labels annotators provided were erroneous, i.e. did not successfully pass through their 
decision tree (figure below). 
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Fig.3. The decision tree evaluation criteria developed by Greenworld. 

Labels were evaluated according to the following steps in the tree. The first step was to ensure 
that buildings were correctly classified according to the data annotation standards. If they were, 
the next step would be to evaluate if “all of the buildings within the chip (i.e. a cut out scene from 
a larger satellite image) have been labeled.” The steps following this zoomed in upon smaller 
details of buildings and images, such as whether label edges were “within 1-2 pixels of the actual 
rooftop”, whether “there are overlapping” labels, and whether shadows from buildings were 
included in a building label. Unfortunately, most annotators could not fulfill the last few 
requirements down the decision tree.  

At this point, Starlight was befuddled. Why were there so many [label] errors? Hari, the Chief 
Data Scientist at Starlight, observed that they had gone through cases such as shadows. He asked 
if annotators in Tarik had instead committed a systematic error, given that Starlight had already 
trained annotators and was concerned that they were misinterpreting the classification standards, 
thus committing the same mistake repeatedly. In a later conversation, we learned from the 
founder of Tarik that apart from systematic errors, annotators sometimes “lose motivation” when 
labeling a single chip of dense buildings. The firm had agreed to a “pretty low (salary) rate” per 
chip, believing that the landscape would not be as dense as Bangladesh and hence, annotators 
could label more chips.  

Annotators from Tarik also confessed that it was hard to be paid by chip, as there were many 
occasions where they only had one or two buildings to annotate. Greenworld quickly reassured 
Hari that the decision tree was not foolproof.  As John, one of Greenworld’s geospatial data 
science team members put it, a “98% accuracy is impossible to achieve, and in fact not common 
in machine learning”. Greenworld acknowledged that error is bound to happen. But the kind of 
errors allowed to train an accurate machine learning model was important to know. 

 

 

Fig. 4. Building roof blocked by shadows in the image of pink labels. 

 

4.2.1 Error reworks relations of hierarchy. 
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To decide what label errors were more imprecise, John (GW) began to pull out labels he found 
difficult to accept or reject as training data. A discussion ensued. One of these labels showed a 
building roof blocked by shadows from surrounding buildings (Figure 4 above). He explained that 
the drawn line “captures a bit of the shaded edge of the building and stops arbitrarily where the 
real edge is, and that happens consistently.” Greenworld’s data scientist consultant, Mary, agreed, 
saying, “we are looking for [real] building edges to be [parallel] to the annotations of the labeler.” 
They scrolled up and down the image, and the Chief Data Scientist of Starlight spotted two 
buildings that were not labeled, making what John previously saw as uncertain a definite reject. 
Given that two buildings out of an estimated number of twenty were missing labels, the label was 
rejected according to the 98th percentile. This led to another discussion on buildings whose roofs 
were obstructed. Were trees blocking less than half of building roofs included in a label? How 
much of the tree could be included in a label?  

John (GW) pulled up another image to help answer these questions. Mary, a team member of 
the data science team from Greenworld, asked to zoom into the image. On the top right corner of 
the image, a building’s edge was exposed but not annotated. The rest of the roof was completely 
covered in green forest, making it difficult to tell where the other end of the building ended. Thirty 
seconds passed. Both Starlight and Greenworld members were staring at the image, trying to infer 
the other end of the roof. Sean jumped in, “If we are spending too much time on it and we are 
looking too long for an error, we should accept [the chip]” even if this roof was not included.  

Mary (GW) quickly added, “You can’t infer how far the building extends underneath the tree. 
I won’t hallucinate something that isn’t there”. Further cases demonstrated the importance of 
accepting labels that simply took too long to decide if there was a label error. It was now clear to 
all members in Greenworld and Starlight that the decision tree, whilst helpful in cases where 
multiple building roofs were unlabeled, tended to be less helpful in cases where building 
classification required extra inference and time. Any chances of including more guesswork from 
evaluators in Greenworld and Starlight such as a blocked roof was reduced to ensure that an 
open-source building detection model could be developed within a short period of time.  

 

 

Fig. 5. An example provided by Greenworld on what a precise outlining of building roofs is. 

There were cases where imprecision, whether in the form of guesswork or incorrect labels, 
were welcomed. These came to light when the meeting moved to another set of label errors 
annotators repeatedly committed: the accurate outlining of individual buildings (Figure 5 above). 
Because of Dhaka’s density, buildings side by side were often annotated as one building or had 
borders that overlapped with one another. Greenworld shared a few annotated images once more, 
showing cases where the lines that outlined buildings overlapped one another. At first sight, it 
was difficult for anyone to spot an overlap. But John (GW) zoomed right into the buildings, 
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making the precision of the overlap clear. These overlaps, according to Mary (GW), would be fatal 
for the overall accuracy of the baseline model they were trying to tune to detect Bangladesh’s 
buildings better. Already, computer code had been run to ensure that no overlaps occurred - but 
it couldn’t detect some of these overlaps. At the same time, the labels for other buildings were 
fairly consistent—according to John (GW), they “were pretty good” and “captured the buildings 
pretty well”. When comparing a single mistake against the rest of the perfectly annotated label, 
it was difficult for both Greenworld and Starlight to decide if an entire label should be rejected 
because of a single mistake. Thomas (GW) chimed in and said the team should accept the label, 
given that they have previously established that any more time spent on staring at a label “would 
drive them nuts”.  

Cory (GW), another member of the data science team under Mary (GW) added:  
 
“When things are ambiguous, to maintain efficiency, if we are thinking too hard we are leaning 

toward acceptance, if we are deliberating more than 20-30 secs, let’s not overcomplicate it 
especially if it’s uncertain again. We would just accept it.”  

 
The above quote shows how reviewers have to rely on annotators’ perceptions when existing 

information is uncertain. Hence, potential imprecisions that may qualify as label errors were 
tolerated because both geospatial data analysts and data scientists in Greenworld could not judge 
within thirty seconds if a label is correct or not. That is, the issue of misclassification would not 
be solved simply by spending more time on a label. Team members had to decide in what contexts 
would a good enough label suffice for the issue at hand.  

In cases where the edges of buildings are cut off at the borders of a satellite image (see Figure 
6 below), annotators’ guesswork was regarded as the main source of accuracy. Greenworld 
referred to these cut off images as a case of incomplete data. When annotators encountered 
incomplete data, they were trained by Hari from Starlight (SL) to toggle between a neighboring 
satellite image and the cut-off image they were labeling on their annotation platform. This way, 
they could tell if a building was on the other edge of a satellite image chip. Cory (GW) agreed 
with Hari (SL), citing that annotators were entrusted to have “studied” the images more fully and 
longer than reviewers. Here, we see how errors provide a site for the temporary reshuffling of 
roles: contracted technicians are viewed as experts above their clients as they had spent more 
time with the imagery. 
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Fig. 6. An example provided by Greenworld on what incomplete information entails. 

We learned later that the judgment of annotators however did not guarantee the success of a 
model all the time. By looking at additional information, annotators were developing training 
data based on materials the ML model would not have access to. This was an error of data-drift, 
which would potentially result in a generalization error. Cory (GW) explained shortly after a 
discussion on additional data, “…. We don’t want to capture things that the model can’t see 
without the [additional data] sources.” A data science advisor to Greenworld from another firm 
further elaborated on why Cory’s statement was important:  

 
“…Similar to a machine learning model trained on a certain dataset, the building concept is xyz 

and the model will try to look for the bracket of xyz in another region. These are new features 
you see, and it might fail but that is OK. Maybe you want to focus on these features and fine tune 
it. That’s good enough…A model that can predict both buildings in Dhaka and another place is 
one that understands the concept of a building in Dhaka, not the exact building itself with all its 
specific features.” 

 
This quote shows how concepts of buildings can change across regions, even if they might 

belong to a similar group. A machine learning model doesn’t need to know all the features of a 
building in one region. However, knowing such specificities prevents practitioners from using 
the model elsewhere. Between trusting the guesswork of annotators in cases of incomplete data 
and constraining their judgment from resulting in a generalization error, Greenworld and 
Starlight calibrated the extent of precision and discretion that annotators could exercise. 

There are two lessons to be learned from this second case study. Conventionally, the reason 
for such accurate machine learning training data would be to retrain a building detection model 
that can generalize across regions. But another way to understand this emphasis on 98% accuracy 
and 2% error is to first consider how the problem of error in data annotation is neither absolute 
nor occurring in isolation. It must be understood in the context of work and organizational 
practices and priorities, where participants balance a set of competing demands. Here, priorities 
were shaped not only by reducing label and generalization errors, but also by the efficiency (cost 
minimization and productive time) of work. In a global setting where remote teams must 
coordinate across timezones, error redeploys old actors such as annotators in new ways by 
centering their labeling as a necessary prerequisite and nexus for efficient work.   

This sets our cases apart from existing technical literature on ML strategies (and even HCML) 
for handling error, which has focused on questions of error in annotation in isolation while 
perhaps missing the tradeoffs, workarounds, and contradictory pressures that in fact shape real-
world collaborative work settings [68]. For instance, in cases such as unclassified buildings, it was 
clear to reviewers that the label should be rejected. However, in more ambiguous cases, such as 
building roofs obscured by trees, evaluators were encouraged to accept labels that were less 
certain or secure in their attribution. Here, the question was no longer whether Tarik was precise 
in their classification. It was about ensuring that time and money was spent well, a responsibility 
and goal that was shared across - and as we have seen above, negotiated between - organizations. 

Second, it also became clear as particular errors become tolerable in manual classification that 
it was challenging to convey to annotators which errors mattered more than others. For instance, 
if a missing building is considered more erroneous than outlining an overcast roof, annotators 



131:22  Cindy Kaiying Lin & Steven J. Jackson 

PACM on Human-Computer Interaction, Vol. 7, No. CSCW1, Article 131, Publication date: April 2023. 

would be able to prioritize satellite chips that had more buildings that were hidden to ensure that 
their chip would be accepted and hence paid for. As annotators are not paid per building roof 
they outlined and were paid per chip instead, they often complained about annotating chips with 
many buildings, given that the added complexity would not factor into their overall salary.  

Hence, the burden of achieving precise imprecision was most impactful on Tarik. As a result, 
in situations where it was difficult to decide at the outset what errors could be tolerated, existing 
structures of collaboration and partnerships fell into place. This impact of relying on older 
structures of collaboration was not borne silently by annotators. Starlight attempted to negotiate 
a higher per-chip rate for Tarik. They also tried to get Greenworld to pay annotators according 
to the time spent on annotation. While these requests were pending, Starlight filtered through a 
series of satellite images with less dense settings that would help Tarik annotators save labor time 
and earn more money.  

4 DISCUSSION 

In the cases above, we see how the identification and negotiation of error constitute a central 
aspect within the wider lives of machine learning and data science [2].  In ways that retrospective 
and summative (‘end-of-pipeline’) accounts regularly occlude, this work unfolds against a 
backdrop of deep uncertainty: things are rarely ‘simply wrong,’ even as they have come to seem 
so by the end of the process. Even if errors were anticipated—such as within the decision tree that 
Greenworld developed—they rarely remained the same throughout time. In real-world and 
applied data science work, judgments and responses to error are also profoundly collaborative in 
nature, involving the divergent interests and understandings of differently placed actors and 
institutions who must work together (in some fashion, whether through mutual accommodation, 
authority, coercion, or some complex mix of these) to arrive at a common-ish set of standards and 
expectations [2]. And the answers arrived at—in the two cases studied here, but we suspect in 
most others as well—are always situated and relative to the purposes at hand, making ‘good 
enough’ evaluations, and not abstract or context-free notions of accuracy, the central virtue of 
real-world data science practices.  

These observations raise the stakes in taking error seriously and suggest the possibility of a 
richer and more generative encounter than the ‘limit and eliminate’ approach to error. This 
approach, we suggest has been the dominant way of thinking about and dealing practically with 
error in mainstream data science research to date.  Our case studies instead suggest a potential 
shift in the basic imaginary of error, moving from a model of ‘limit and eliminate’, to one that 
foregrounds the artful living with error.  What would it mean for CSCW, human-centered 
machine learning, and allied fields to take these propositions seriously?  Can we imagine a more 
jazz-like (even Monk-like) relation to error in the contemporary practice and understanding of 
data science [56]?  What difference (if any) would this difference make? 

4.1  Error discloses existing structures of collaboration   

First, by paying attention to breakdown and errors, we reveal existing structures of collaboration 
unseen or underappreciated in seemingly working systems. On the one hand, error is often used 
by powerful actors to make claims on who committed labeling mistakes in AI systems [68]. But 
at the same time, errors reveal how differently positioned experts can collectively reach 
agreement through different structures of collaboration – whether in more hierarchal and rigid 
arrangements, or more flexible and adaptive partnerships. As illustrated in the two case studies, 
errors are opportunities for collaborators to show how buildings break down and reveal the less-
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than-universal nature of man-made landscapes across regions. How these errors were disclosed 
and dealt with, however, depended on existing organizational cultures, norms, and hierarchies.  

Greenworld, for instance, attempted to use a quality control standard or decision tree to 
evaluate the label errors of Tarik—in the process disclosing how they viewed themselves as an 
authority over their data annotators. This also reflected how they typically conducted their work 
to meet tight timelines and demands. Greenworld’s vision of how annotation work should be 
performed was challenged by the intermediary Starlight, who introduced flexibility and openness 
in the collaboration with Tarik.  

In contexts where organizational hierarchies were more rigid—such as within the Indonesian 
government—senior scientists could challenge Bayu, a junior earth scientist, on the universal 
application of LiDAR data and edge point schema to building structures in Indonesia. At the same 
time, by engaging them on their terms, Bayu could convince senior scientists that LiDAR datasets 
were able to navigate the problem of buildings being too close to one another. 

We might consider how the disclosing properties of errors are a site for transparency and 
accountability – principles which are central to AI ethics (for critical views of AI ethics, see [18] 
[39] [74] [67] [85] [104]. Instead of treating errors as the inevitable result of ML practice, we 
conceive of errors as a practical site revealing the fallibility and fragility of ML, and exposing the 
collaborative structures of work that precede ML use and development. Errors are central for 
(listening to) and learning what has gone wrong, and provide avenues for ML practitioners and 
their collaborators to navigate the black box nature of ML (as well as organizations) through 
improvisational work [56].  

Error is a property of an accountable AI ethics, given that it forces developers to exercise some 
responsibility for a system’s breakdown, provides transparency into how error comes about, and 
reveals under what collaborative circumstances the system might be repaired. Instead of an 
artifact largely defined by technocrats [39] and compromised by corporate interests [105], an AI 
ethics centered on error broadens its vision to include the network of relations and collaborations 
necessary for rendering AI functional. Errors, whether a misclassification of LiDAR data points, 
or the failure of a building detection model to generalize across far-flung datasets of buildings, 
can provide a generative force for more purposive AI systems and worlds.  

4.2  Error generates new forms and sites of collaboration 

Second, errors can also serve as an organizing force and principle, bringing new forms and sites 
of collaboration into being.  Errors can temporarily interrupt a sense of partnership and shared 
expectation within existing collaborations. They implode expectations, create breakdowns, and 
leave cracks within the seamless facade of (functioning) ML systems. But error also generates 
new collaborations through bringing in additional or alternative data, actors, and sites. In the first 
case study, for instance, Bayu and Faizah’s ability to show that they could develop a machine 
learning method for mapping buildings rested on the assumption that data technicians were 
unable to accurately classify with high-resolution images. Label errors allowed Bayu and Faizah 
to introduce a new method of mapping that worked on LiDAR data points instead of pixels to 
classify buildings. Label errors allowed for the entry of new data and actors, reorganizing how 
geospatial data workflows were conventionally arranged for national mapping efforts.  

In the second case study, we learned that the fear of label errors drove Greenworld to develop 
a new data quality control standard or decision tree. This decision tree brought in new actors and 
sites such as Starlight to evaluate the quality of Tarik’s labels, bringing heterogeneity in how 
annotation pipelines are typically constructed between the primary client and the annotators. 
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This new collaboration brought in Starlight as an actor to negotiate the challenges of working 
across different time zones, expertise, and cultures. Evaluators from Greenworld and Starlight 
worked together to figure out if errors committed by annotators were necessarily bad. They 
coordinated their perceptions with visual inspection and decided what level of imprecision was 
allowable. In this way, there was some flexibility in determining how much and what kind of 
errors can be tolerated and reveals how errors invite change in collaborative structures. 

Through their investigative and evaluative processes, Greenworld and Starlight came to 
realize what annotators of Tarik had long known through experience: precision was not a static 
entity [102]. Precision was instead remade through interactions between differently placed 
organizations and fields of study [93]. In particular, we can see how coercion and authority over 
annotators was less central than mutual accommodation between annotators and experts. This 
reveals how data science calls into being new forms of collaborative structures. 

Noticing how error invites new actors, forms, and collaboration sites reaffirms an earlier point 
made by CSCW scholars Samir Passi and Steve Jackson on the rule-based nature of data science. 
By studying data science in action, one begins to understand how data analytics is not fully 
determined by abstract formulas and universal rules. Rather data science is a negotiated practice 
– rule-based rather than rule-bound – with limits to how practitioners develop and use data 
science techniques and models. A rule-based data science celebrates the work and “lived 
differences between theoretical reality, empirical richness and situated improvisations” rather 
than homogenize or flatten these potential frictions [[90]: 9]. We extend this further to show how 
the situated practice of dealing with error also meant bringing in new structures of collaboration. 
This is because AI rules, like the partnerships that sustain them, are not deterministic and 
absolute; its breakdown is met with flexibility and adaptation by its practitioners.  

4.3  Error reworks existing collaborative relations and hierarchies  

Third, error reworks or redeploys current collaborative structures, including in ways that reshape 
relations of hierarchy and authority, recentering and devaluing particular roles and positions. In 
our case studies, data science and its existing collaborative relations and hierarchies were 
mobilized by data scientists and domain experts to paradoxical ends. On one hand, data science 
can recenter old actors who have been marginalized in the field of machine intelligence. On the 
other hand, it can also be used to penalize those whose perceptions are viewed as prone to error. 
This ability to reshape and/or redeploy old structures for new ends is not necessarily because the 
implementation of data science displaces manual labor.  

As we have shown in Case Study 1 there are existing hierarchies and power dynamics between 
remote sensing scientists and geospatial data technicians. Data technicians have long been 
regarded in the remote sensing community as performing menial and mundane mapping work in 
Indonesia [60]. Bayu, for example, strategically redeployed their old roles and practices to justify 
using ML in national mapping efforts [61]. This stands in contrast to CSCW scholarship that 
asserts that machine learning can replace traditional disciplines such as mapping [84].  

At the same time, in Case Study 2, we show how annotators were gradually recognized for 
playing crucial roles in making quality ground truth data. While initially Tarik’s labels were 
perceived as out of alignment with Greenworld’s mapping standards, Greenworld later agreed 
that annotators had the ability to see images in ways that evaluators could not. When time is 
constrained, and reviewers lack supplementary data to judge what classifications can be 
considered accurate, annotators were entrusted with studying the images more than domain 
experts and data scientists. Error hence gives organizations an opportunity to redeploy old actors 
such as annotators within hierarchies that recenter the expertise and value of data annotation 
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work. Error also shows how annotation work is recentered primarily in situations where timeline 
pressures mounted. Deferring to the judgment of data annotators only mattered when 
Greenworld’s evaluators sensed that they were running short on time, and/or simply could not 
evaluate each chip and edge case with more given time. This intermittent recognition of 
annotators’ judgment does pose the question of whether greater recognition of annotation work 
would be possible if timelines for such projects were looser and not pressed for time. 

While Bayu’s attempts to integrate data science in mapping devalued geospatial data 
technician labor in the first case study, the recentering of Tarik’s technical expertise in the second 
case study shows us how the impacts of data science on relations of hierarchy and authority are 
not straightforward. As anthropologist Andrea Ballaestro argues, for professionals such as ML 
practitioners who regularly use or are familiar with “calculation grammar”, technical practices 
are far less formulaic and “much more morally potent than they seem” [11].  

Ballaestro describes how Costa Rican technocrats use a pricing algorithm to link social and 
technical concerns, providing a “distinctively technical place for ethics” that is nonetheless 
charged with the possibility of social transformation and change [8]. In the same way, we believe 
that errors provide domain experts and data scientists an ability to analyze what worlds data 
science affords more closely, and what worlds become compromised. In this way, it is the 
responsibility and risk of the ML practitioner and their collaborators to decide what steps should 
be taken in this double bind.  

5 CONCLUSION 

With increased attention to the harms and violence of AI systems in governance, employment, 
policing, and finance, there has been growing discussion both within CSCW and adjacent fields 
on the multiple failures and limits of AI systems, especially as they become entangled within 
complex fields of human and ecological practice. This has sometimes motivated a limit and 
eliminate approach, in which the fantasy of an error-free machine learning model seems just that 
much closer to attainable—a fantasy that centers the roles that technical ML practitioners play in 
this process.  

Our paper has instead focused on the pragmatics and practice of error – how errors are 
currently managed in practice (by distributed, real-world remote actors); the complexity and skill 
of this work; how errors can offer new insight and discovery; and above all how errors can reveal, 
rework, and generate new and preexisting structures, relations, and form of collaboration in data 
science work (with complex and contingent effects on existing relations of expertise and 
authority). Shedding light on responses to error outside of “limiting and eliminating” reveals how 
sociotechnical errors are sites that social scientists and critical data studies and computing 
scholars should have a stake in further clarifying and elucidating. 

We have provided two case studies of building detection models used for environmental and 
healthcare reasons to emphasize error’s generative potential for collaboration, negotiation, and 
innovation. We acknowledge that label and generalization errors are not the only errors that 
plague machine learning practitioners and urge scholars to study how failures are being 
diagnosed and dealt with in ML communities. Already, critical conversations on the role of error 
in data science have begun in the fields of CSCW, FAACT, STS, and information science, with 
attention given to questions of who has the authority to determine errors [3] [4][32] [48] [84], 
how errors are defined according to normative standards of success and efficiency [2] and how 
perceived errors may hold consequences for the legitimacy of public data infrastructures [17].  
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We build on such work to think with the dynamic status of errors and how they can shape 
organizational structures and concomitant relations of expertise and authority within the 
environmental and geographical sciences. Our paper provides an empirical account of daily error 
management practices that demystify the all-encompassing powers that successful and 
progressive ML systems are depicted as having within popular discourse. More importantly, we 
wish to emphasize the artful ways that people collaborate and negotiate with error, and to 
illuminate how recognition for this work can lead us to more effective, more creative, more 
accountable, and more human-centered forms of machine learning and data science.  
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