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ABSTRACT 

Learning to see through data is central to contemporary 
forms of algorithmic knowledge production. While often 
represented as a mechanical application of rules, making 
algorithms work with data requires a great deal of situated 
work. This paper examines how the often-divergent demands 
of mechanization and discretion manifest in data analytic 
learning environments. Drawing on research in CSCW and 
the social sciences, and ethnographic fieldwork in two data 
learning environments, we show how an algorithm’s 
application is seen sometimes as a mechanical sequence of 
rules and at other times as an array of situated decisions. 
Casting data analytics as a rule-based (rather than rule-
bound) practice, we show that effective data vision requires 
would-be analysts to straddle the competing demands of 
formal abstraction and empirical contingency. We conclude 
by discussing how the notion of data vision can help better 
leverage the role of human work in data analytic learning, 
research, and practice. 

Author Keywords 
Data Vision; Data Analysis; Professional Vision; Machine 
Learning; Digital Humanities; Professionalization 
ACM Classification Keywords 
H.m. [Information Systems]: Miscellaneous 

INTRODUCTION 
Algorithmic data analysis has come to enable new ways of 
producing and validating knowledge [15, 25]. Algorithms 
are integral to many contemporary knowledge practices, 
especially ones that rely on the analysis of large-scale 
datasets [15, 20, 21, 34]. At the same time, we know that 
algorithms can be selective [34], subjective [7], and biased 
[3]; that they work on multiple assumptions about the world 
and how it functions [5, 15, 34, 35]; and that they 
simultaneously enable and constrain possibilities of human 

action and knowledge [5, 6]. Algorithmic knowledge 
production is a deeply social and collaborative practice with 
sociocultural, economic, and political groundings and 
consequences. 

In all these ways, data analysis embodies a distinct and 
powerful way of seeing the world. Data analysts learn to 
represent and organize the world through computational 
forms such as graphs, matrices, and a host of standardized 
formats, enabling them to make knowledge claims based on 
algorithmic analyses. But this is just one half of the story. 
The world doesn’t always neatly fit into spreadsheets, 
matrices, and tables. While data analysis is often understood 
as the work of faceless and unbiased numbers and 
algorithms, a large amount of situated and discretionary 
work is required to organize and manipulate the world 
algorithmically. Effective algorithmic analysis also demands 
mastery of the ways that worlds and tools are put together, 
and which worlds and tools are so combined (across the wide 
range of methods, tools, and objects amenable to 
representation). Taken together, these two seemingly 
contradictory features constitute what we call data vision: 
the ability to organize and manipulate the world with data 
and algorithms, while simultaneously mastering forms of 
discretion around why, how, and when to apply and 
improvise around established methods and tools in the wake 
of empirical diversity. 

Integrated, often seamlessly, in the practice of expert 
practitioners, these contradictory demands stand out with 
particular clarity in the moments of learning and 
professionalization through which novices learn to master 
and balance the intricacies of data vision. How do students 
learn to “see” the world through data and algorithms? How 
do they learn to maneuver and improvise around forms and 
formalizations in the face of empirical contingency? This 
paper addresses such questions in the context of data analytic 
learning environments such as classrooms and workshops. 

While distinct from other contexts of professional practice 
(e.g., industry settings or research centers), learning 
environments provide partial but meaningful sites to 
understand some of the ways in which would-be practitioners 
are immersed and acculturated into professional discourse 
and practice. [On the relation and relevance of learning 
environments for ‘mature’ professional practice, see inter 
alia 8, 16, and 24]. The explicit focus in learning 
environments on demonstrating established methods and 
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theories to would-be professionals allows us to see how 
particular pedagogic demonstrations and analytic examples 
enable specific algorithmic norms and heuristics. More 
importantly, a study of classrooms and workshops draws 
attention to the social aspects of learning – a process of 
participation and membership in a discourse, instead of just 
a set of individual experiences. In learning environments, 
aspects of professionalization are accomplished through 
guided interactions between instructors, students, teaching 
assistants, educational materials, assignments, and exams. 
Learning environments thus function as important sites in 
which would-be data analysts learn to see the world through 
and as data – a crucial rite of passage on their way to 
becoming full-fledged members in the data analytic 
“community of practice.” [24] 

This paper describes two separate sequences of events – one 
from a machine-learning classroom, and another from a 
series of digital humanities workshops – to show how 
learning to see through data requires students to maintain a 
balance between viewing the world through abstract 
constructs, while simultaneously adapting to empirical 
contingency. We advance a rule-based (as opposed to a rule-
bound) understanding of data analytic practice, highlighting 
the situated interplay between formal abstraction and 
mechanical routinization on the one hand, and discretionary 
action and empirical contingency on the other. We show how 
it is the mastery of this interplay – and not just the practice 
of data analytic techniques in their formal dimension – that 
is central to the growing skill and efficacy of would-be data 
analysts. We argue that better understanding of data vision 
in its more comprehensive and discretionary forms can help 
researchers and instructors better engage and leverage the 
human dimensions and limits of data analytic learning and 
practice.  

The sections that follow begin by reviewing CSCW, HCI, 
and social science literatures on professional vision, situated 
knowledge, and discretionary practice. We then describe our 
research sites, before moving to the empirical examples. We 
conclude by discussing the implications of the notion and 
practice of data vision, and the distinction between a rule-
bound and rule-based understanding of data analysis, for data 
analytic learning and practice, and for CSCW research and 
practice more broadly. 

PROFESSIONAL VISION, SITUATED KNOWLEDGE, AND 
DISCRETIONARY PRACTICE 
Our work on data vision builds on a classic and growing body 
of work in the social sciences that has explored forms of 
identity, practice, and perception underpinning and 
constituting forms of professional knowledge. Goodwin’s 
work on professional vision [16] analyzes two professional 
activities (archaeological field excavation and legal 
argumentation) to show how professionals learn to “see” 
relevant objects of professional knowledge with and through 
practice: the exposure to and exercise of theories, methods, 
and tools to produce artifacts and knowledge in line with 

professional goals. Learning professional practice, he argues, 
help professionals make salient specific aspects of 
phenomena, transforming them into objects of knowledge 
amenable to professional analysis. Learning to see the world 
professionally, however, is not reducible to the mastery of 
generic rules and formal techniques. Instead, professional 
vision is slowly and carefully built through training, 
socialization, and immersion into professional discourse [16, 
24, 30, 32]. Professional vision, thus, is a substantive and 
collaborative sociocultural accomplishment – a way of 
seeing the world constructed and shaped by a “community of 
practice.” [24] 

A key aspect of professional vision, as Abbott [1] argues, is 
the way in which practitioners situate given problems within 
existing repertoires of professional knowledge, methods, and 
expertise. According to Abbott, the process of situating given 
problems – of “seeing” professionally – must be clear 
enough for professionals to create relations between a given 
problem and existing knowledge (e.g., what can I say about 
this specific dataset?), yet abstract, even ambiguous, enough 
to enable professionals to create such relations for a wide 
variety of problems (e.g., what are the different kinds of 
datasets about which I can say something?). 

A similar interplay between abstraction, clarity, and 
discretion exists within data analytic practices. Algorithms, 
developed in computational domains such as machine-
learning, information retrieval, and natural language 
processing, provide means of analyzing data. It is often 
argued that a specific algorithm can work on multiple 
datasets as long as the datasets are modeled in particular 
ways. However, data analysis requires much more work than 
simply applying an algorithm to a dataset. As Mackenzie 
argues: certain data analytic practices such as vectorization, 
approximation, and modeling often mask the inherent 
subjectivity of dataset and algorithms, imbuing them with a 
sense of inherent “generalization.” [26] From choice of 
analytic method, to choices concerning data formatting, to 
decisions about how best to represent and communicate data 
analytic results to ‘outside’ audiences, a large amount of 
situated and discretionary work – e.g., in the form of data 
collection, data cleaning, data modeling, and other forms of 
pre- and post-processing – is required to make datasets work 
with chosen algorithms. Data analysts not just learn to see 
and organize the world through data and algorithms, but also 
learn and discern meaningful and effective combinations of 
data and algorithms. As Gitelman et al. [15] argue: “raw 
data” – at least as a workable entity – is an oxymoron. It takes 
work to make data work. 

Abbott’s [1] example of chess is instructive in evoking the 
situated and discretionary work characteristic of all forms of 
practice. The opening and closing moves in a game of chess, 
Abbott argues, often appear methodical and rigorous. 
However, in between these two moves, he argued, is the 
game itself in which knowledge, expertise, and experience 
intermingle as the game progresses. On one hand, we can 



summarize and teach chess as a collection of formal rules 
and techniques (e.g., how a pawn moves, how the rook 
moves, ways to minimize safe moves for your opponent, 
etc.). On the other hand, however, we have to acknowledge 
that any and all application of such rules is situated – 
contingent to the specific layout of the game at hand. In this 
way, chess (and professional vision) is rule-based but not 
rule-bound – a distinction we return to in the discussion.  

These insights are backed in turn by a long line of pragmatist 
social science dealing with the nature of ‘routines’ and 
‘routinizable tasks’ in organizational and other contexts. 
Building on Dewey’s [12] foundational work, Cohen [9] 
argues against the common understanding of routinized tasks 
as collections of rigid and mundane actions, guided by 
“mindless” rules and mechanized actions; instead, the 
performance of a routine is both skilled and unique: 

“For an established routine, the natural fluctuation of 
its surrounding environment guarantees that each 
performance is different, and yet, it is the ‘same.’ 
Somehow there is a pattern in the action, sufficient to 
allow us to say the pattern is recurring, even though 
there is substantial variety to the action.” [9: 782] 

Klemp et al. [22] also draw on Deweyan roots to address 
these “similar, yet different” applications of routines through 
the vocabulary of plans, takes, and mis-takes. There might be 
a plan (a method, an algorithm, a script), and there might be 
known mistakes (incompatibility, inefficiency, misfit), but 
every application of the plan is a take ripe for mis-takes. Mis-
takes occur when professionals are faced with something 
unexpected during the execution of formal and established 
routines. Drawing on the example of a Thelonious Monk jazz 
performance, the authors explore the complex discretionary 
processes by which a musician deals with mis-takes: 

“When we listen to music, we hear neither plans nor 
mistakes, but takes in which expectations and difficulties 
get worked on in the medium of notes, tones and 
rhythms. Notes live in connection with each other. They 
make demands on each other, and, if one note sticks out, 
the logic of their connections demands that they be reset 
and realigned.” [22: 10] 

Mis-takes, then, mark elements of “contingency, surprise, 
and repair [found] in all human activities.” [22: 4] Signifying 
the lived differences between theoretical reality and 
empirical richness, mis-takes necessitate situated, often 
creative, improvisations on the part of professionals and 
other social actors. 

Like Abbott’s description of chess, Klemp et al.’s analysis 
draws out the situated nature of professional knowledge and 
practice, even in apparently straightforward and routinized 
procedures. This point is further elaborated by Feldman & 
Pentland [14], who show how routines are ostensive (the 
structural rule-like elements of a routine) as well as 
performative (the situated and contingent execution of a 
routine). It is the interplay between the two aspects that 

allows for the discernable but shifting reality of routinized 
work and professional practice. Along similar lines, Wylie’s 
study of paleontology laboratories [37] shows how adapting 
situated routines and practices to deal with new problems-at-
hand is considered an integral aspect of learning by doing. 
“Problem-solving in ways acceptable to a field [...] can be an 
indicator of skill, knowledge, and membership in that 
particular field.” [37: 43] 

However, the situatedness of a practice is not always visible. 
Ingold [17: 98], using the example of a carpenter sawing 
planks, describes how to an observer, “it may look as though 
[…a] carpenter is merely reproducing the same gesture, over 
and over again.” Such a description, he reminds us, is 
incomplete: 

“For the carpenter, [...] who is obliged to follow the 
material and respond to its singularities, sawing is a 
matter of engaging ‘in a continuous variation of 
variables…” [17: 98] 

To improvise on seemingly routine tasks then is to “follow 
the ways of the world, as they open up, rather than to recover 
a chain of connections, from an end-point to a starting-point, 
on a route already travelled.” [17: 97] 

Such social science insights on professional vision and 
discretionary practice have translated into important CSCW 
and HCI research programs. For instance, Suchman and 
Trigg [32] demonstrate the role and significance of 
representational devices for ways in which Artificial 
Intelligence (AI) researchers see and produce professional 
objects and knowledge. Mentis, Chellali, & Schwaitzberg 
[27] show how laparoscopic surgeons demonstrate ways of 
“seeing” the body through imaging techniques to students: 
“seeing” the body in a medical image is not a given, but a 
process requiring discussion and interpretation. Mentis & 
Taylor [28] similarly argue that “work required to see 
medical images is highly constructed and embodied with the 
action of manipulating the body.” Situating objects or 
phenomena in representations, they argue, is a situated act: 
representations don’t just reveal things, but also produce 
them, turning the “blooming, buzzing confusion” of the 
world [19] into stable and tractable “objects” amenable to 
analytic and other forms of action. 

Performing analytical and other forms of action on the world, 
however, requires people to deal directly with empirical 
contingency. Suchman [33] argues that “plans” are 
theoretical, often formulaic, representations of human 
actions and practices. “Situated action,” however, requires 
people to work with continuous variation and uncertainty in 
the world. Human action, she argues, is a form of iterative 
problem solving in an attempt to accomplish a task. 
Creativity often emerges within such situated and 
discretionary forms of problem solving. As Jackson & 
Kang’s [18] study of interactive artists shows, dealing with 
material mess and contingency (in this case, attached to the 
breakdown of technological systems and objects) may 



necessitate and drive forms of improvisation and creativity 
at the margins of formal order. Creativity – understood not 
as an abstract and free-standing act of cognition but rather as 
a situated sociomaterial accomplishment – emerges through 
the interplay between routines and applications, between 
plans, takes, and mis-takes, and between empirical mess and 
theoretical clarity. 

Such situated and discretionary acts are no less central to 
forms of data analysis and algorithmic knowledge studied 
and practiced by CSCW and HCI researchers. Clarke [11], 
for instance, analyzes the human collaborative work in data 
analytics that is often overlooked in the face of the growing 
“popularity of automation and statistics.” He analyzes the 
processes used by online advertising professionals to create 
user models, bringing to light ways in which we can design 
better software to accommodate the mundane, assumptive, 
and interpretive deliberation work that goes into producing 
such “social-culturally constituted” models. Pine & Liboiron 
[30] study the use of public health data, showing how data 
collection practices are actually social in nature. One does 
not simply collect “raw data.” Data collection practices are 
shaped by values and judgments about “what is counted and 
what is not, what is considered the best unit of measurement, 
and how different things are grouped together and ‘made’ 
into a measurable entity.” [30: 3147] Along similar lines, 
Vertesi & Dourish [36] show how the use and sharing of data 
in scientific collaboration depends on the contexts of 
production and acquisition from which such data arise. 
Taylor et al. [35] show how data materializes differently in 
different places by and for different actors. Indeed, it is 
precisely the erasure of these kinds of work that produces the 
troubling effects of neutrality, “opacity”, and self-efficacy 
that all too often clouds public understanding of “big data,” 
and makes algorithms appear ‘magical’ in learning, but also 
‘real-world’ environments [8]. 

These bodies of CSCW and HCI research call attention to 
aspects of formalism, contingency, and discretion at the heart 
of algorithmic knowledge and data analytic practices. An 
algorithm is a collection of formal rules – indeed, a 
routinizable plan of action – that organizes data in 
predictable and actionable ways. Yet each dataset poses 
unique challenges (and opportunities) for the data analyst, 
necessitating ways to accommodate the variations in the 
seemingly routine acts of “applying” algorithms. To learn 
data vision then is to learn to see similarities as well as 
differences in the ways in which data, algorithms, and worlds 
are put together. To see with data is to see the unknown, the 
different, and the singular within the space of the mundane 
and predictable. Advancing an understanding of data 
analytics as a rule-based (as opposed to a rule-bound) 
practice, this paper argues that data vision is not merely a 
collection of formal and mechanical rules, but a situated and 
discretionary process requiring data analysts to continuously 
straddle the competing demands of formal abstraction and 
empirical contingency. 

METHODS AND FINDINGS 
The arguments that follow build on ethnographic fieldwork 
conducted at a major U.S. East Coast University. We 
conducted a four month long participant-observation study 
in a graduate level machine-learning class taught at the 
university in fall 2014. One of the authors was enrolled as a 
student in one section of the course with ~80 students. We 
also conducted a participant-observation study of a series of 
three digital humanities workshops organized at the same 
university during spring 2015. The workshops’ purpose was 
to expose students to computational techniques for text 
analyses. Each workshop lasted two hours, and the number 
of participants in each workshop ranged from nine to 
thirteen. 

CASE 1: MACHINE-LEARNING CLASSROOM 
Our first case follows an instance of data analysis and 
learning revealed during a machine-learning class. At the 
point we pick up the story, the instructor is about to introduce 
a type of algorithm that classifies things into groups (called 
clusters) such that things within a cluster are sufficiently 
similar to each other, and things across clusters are 
sufficiently different from each other.  

 
Figure 1. Class exercise to introduce the notion of clusters. 

The instructor starts by showing an image to the students 
(figure 1) and inquiring: how many clusters do you see? Most 
students give the same answer: “three clusters.”  

 
Figure 2. The three clusters that the students initially saw. 

Having anticipated this response, the instructor shows 
another image with three clearly marked clusters (figure 2). 
The instructor informs the students that the number of 
clusters present in the image is actually unclear: 



How many clusters? I don’t know. I haven’t even told 
you what the similarity measure is [i.e., how do you even 
know which two dots are similar to each other in this 
graph.] But, you all somehow assumed Euclidean 
Distance [i.e., the closer two dots are, the more similar 
they are.] 

He now shows other types of clusters that could have been 
“seen” (figure 3). As is clear from these images, there could 
have been two or three clusters. Moreover, there could have 
been different kinds of two clusters (figure 3a/3b) and 
different kinds of three clusters (figure 3c/3d). After the 
students have had a chance to digest this lesson, the instructor 
goes on to introduce the concept of a clustering algorithm:  

A clustering algorithm does partitioning. Closer points 
are similar, and further away points are dissimilar. We 
haven’t yet defined what we mean exactly by similarity, 
but it’s intuitive, right? 

Having made this point, the instructor moves on to a more 
specific algorithm. The instructor explains that this algorithm 
works on a simple principle: the similarity of two clusters is 
equal to the similarity of the most similar members of the two 
clusters. 

Having made this point, the instructor moves on to a more 
specific algorithm. The instructor explains that this algorithm 
works on a simple principle: the similarity of two clusters is 
equal to the similarity of the most similar members of the two 
clusters. The idea is to take a cluster (say, X), find the cluster 
that is most similar to it (say, Y), and then merge X and Y to 
make a new cluster. It is important to note that knowing the 
premise on which this algorithm functions is different from 
knowing how to apply it to data. How do we find a cluster 

most similar to a given cluster? What does it mean when we 
say “most similar members of the two clusters”? Such 
questions, as we will see, are key to this algorithm’s 
application. 

The instructor now demonstrates the application of this 
algorithm by drawing a 2-dimensional graph marked with 
eight dots (figure 4a). The closer the two dots are, he 
explains, the more similar they are for the purpose of this 
algorithm. At the start (figure 4a), there are no clusters but 
only a set of eight dots. The instructor tells the students that 
each dot will be treated initially as a cluster. He then starts to 
apply the algorithm beginning with dot-1. On visual 
inspection, the instructor and students infer that dot-1 is 
closer to dot-2, dot-3, and dot-4, than it is to the other dots. 
The instructor and the students then look again, and 
determine that of the three remaining points, dot-2 is the one 

Figure 4. In-class exercise to learn a particular clustering algorithm. 

Figure 3. Different kinds of clusters that could have been seen. 



closest to dot-1. Thus, based on the chosen similarity metric 
of physical distance, dot-1 and dot-2 are merged to form 
cluster-A (figure 4b). 

The instructor now moves on to dot-3. Following the same 
logic, the instructor and students infer that dot-3 is closer to 
cluster-A and dot-4 than it is to the other dots. The instructor 
reminds the students that for this algorithm, two clusters are 
compared based on their most similar members (i.e. two dots 
– one in each cluster – that are closest to each other). Thus, 
comparing dot-3 and cluster-A, he says, means comparing 
dot-3 and dot-1 (as dot-1 is the dot in cluster-A that is closest 
to dot-3). Looking at dot-3, dot-1, and dot-4, the instructor 
and students infer that dot-4 is the one closest to dot-3; dot-
3 and dot-4 are then merged to form cluster-B (figure 4c). In 
the next two steps, the instructor and students go on to dot-3 
and dot-4, forming cluster-C (figure 4d) and cluster-D 
(figure 4e) respectively. 

At this point, eight dots have been lost, and four clusters 
(with two dots each) gained (figure 4e). After reminding the 
students that comparing two clusters requires finding two 
dots – one in each cluster – that are closest to each other, the 
instructor moves on to cluster-A. A few students point out 
that the similarity between cluster-A and cluster-B is 
equivalent to the similarity between dot-1 and dot-3. Other 
students argue that it is equivalent to the distance between 
dot-2 and dot-4, as the distances between them look the 
same. The instructor agrees with the students, and informs 
them that these distances represent the similarity between 
cluster-A and cluster-B. The students go on to perform the 
same analysis to compare cluster-A, -C, and –D. 

With regard to cluster-A, the comparison is now down to 
three sets of distances: between a) dot-2 and dot-4, b) dot-2 
and dot-5, and c) dot-2 and dot-7. On visual inspection, the 
students observe that dot-2 is closest to dot-5. Cluster-A and 
cluster-C are therefore merged to form cluster-1 (figure 4f). 
A similar operation merges cluster-B and cluster-D to form 
cluster-2 (figure 4g). In the last step, cluster-1 and -2 are 
merged to form a single cluster containing all eight dots 
(figure 4h). With this, the instructor tells the students, they 
have reached the end of the exercise, having successfully 
“applied” the clustering algorithm. 

There are three striking features about the in-class exercises 
described in this section. The first is the step-by-step 
mechanical nature of the instructor’s demonstration of the 
algorithm. Explicit in the algorithm’s demonstration is a 
collection of formal rules specifying how to treat individual 
dots, how to compare two dots, how to compare a dot and a 
cluster, etc. Aspects of data vision, as we see in this case, are 
built sequentially with students learning an algorithm’s 
application as a set of mechanical and routine steps through 
which data – represented as dots – are manipulated, enabling 
the formation of similarity clusters. 

A second and related feature is the abstract nature of the 
represented and analyzed data. These exercises do not have 

a specific “real-world” context supplementing them. The 
students were never told, and they never inquired, what the 
dots and the graph represented. The dots were presented and 
analyzed simply as label-less dots on a nameless graph, 
generic representations of any and all kinds of data that this 
algorithm can work on. 

A third and final point concerns the reliance on visuals to 
demonstrate the operation of the algorithm. We see how 
visual forms such as dots, circles, and graphs helped students 
learn to “see” data in ways amenable to formal representation 
and organization. This allows the students to learn to 
manipulate the world as a set of data points arrayed in 2-
dimensional space. The algorithm, it appears, “works” as 
long as data is in the form of dots in n-dimensions.  

While seeing and organizing the world through mechanical 
rules and abstract representations is key to data vision, 
students also need to learn to see the application of an 
abstract, generic method as a situated and discretionary 
activity. An instance of this appears in the case below. 
CASE 2: DIGITAL HUMANITIES WORKSHOPS 
Our second case follows the construction of data vision as 
revealed during a series of digital humanities workshops. 
Digital humanities, broadly put, is a research area in which 
humanists and information scientists use computational as 
well as interpretive methods to analyze data in domains such 
as history and literature. The vignette that follows describes 
how workshop conveners and students decide what dataset 
to work on and what happens when they begin to analyze the 
chosen dataset. 

It hasn’t been straightforward for the workshop conveners to 
decide what texts (i.e., data) the students should work on as 
a group not only because students have different research 
interests but also because not all texts are digitally available. 
In the first workshop session, there is a long discussion on 
how to get digitized version of texts (e.g., from Project 
Gutenberg, HathiTrust, etc.), what format to use (e.g., XML, 
HTML, or plain-text files), how to work with specific 
elements of a file (e.g., headers, tags, etc.), and how to clean 
the files (e.g., fixing formatting issues, removing stop-words, 
etc.). The students can, of course, simply download a novel, 
and start reading it right away, but the point of the discussion 
is to find ways in which the students can make algorithms do 
the work of “reading.” 

While describing ways to convert files from one format to 
another, something catches the convener’s eyes as he shows 
the students an online novel’s source code. There is a vertical 
bar (|) in certain words such as ‘over|whelming’ and 
‘dis|tance.’ At first, students suspect the digitized version has 
not been properly proofread. However, after noticing more 
and more words with the vertical bar symbol, the convener 
returns to the non-source-code version of the novel to 
discover that these are actually words that cut across lines 
with a hyphen (-). The computer has been joining the two 
parts of these words with a vertical bar. At this point, a 



student asks about ways in which she can recognize such 
errors, separating “good” from “bad” data. A discussion 
ensues about ready-to-use scripts and packages. Several 
students observe that manual reading can help spot such 
errors, but the whole point of using algorithms is to allow 
work with much more text than can be read and checked in 
this way. The discussion ends with no clear answers in sight. 

A second question concerns the dataset to be used for 
purposes of the common class exercises. This decision is 
reached only by the end of the second session: English 
Gothic novels. This choice is arrived at on the basis of 
convenience rather than common interest – only one student 
has a research interest in Gothic literature. But a complete set 
of English Gothic novels in digital form is perceived to be 
easier to obtain than other candidates suggested by the group. 
“The allure of the available,” as the convener remarks, “is a 
powerful thing.” But this raises another issue: what actually 
qualifies as a Gothic novel? Something with the word Gothic 
in the title? One tagged as Gothic by the library? Or one 
acknowledged as Gothic by the wider literary community? 
After some discussion, the conveners and students agree to 
ask one of the library’s digital curators to select a set of 
Gothic novels, and at the start of the third workshop session 
students are presented with plain-text files of 131 English 
Gothic novels. 

While discussing ways in which this dataset can be used, a 
student inquires whether it is possible to create a separate file 
for each novel containing only direct quotes from characters 
in the novel. The workshop convener and students decide to 
try this out for themselves and immediately encounter a 
question: how can an algorithm know what is and isn’t a 
character quote? After some discussion, the students decide 
to write a script that parses the text, inserting a section break 
each time a quotation mark is encountered. They surmise that 
this procedure will thereby capture all quotes as the text 
falling between sequential pairs of quotes. The total of such 
pairs will also indicate the number of quotes in each novel. 
Based on this understanding, the students create the below 
algorithm (in Python) to perform this work: 

import sys 
text = “” 
 
for line in open(sys.argv[1]): 
text += line.rstrip() + “ ” 
 
quote_segments = text.split(“\””) 
is_quote = False 
 
for segment in quote_segments: 
print “{0}\t{1}\{2}\n”.format(“Q” if is_quote else “N”, 
len(segment), segment) 
## every other segment is a quote 
is_quote = not is_quote 

When tested against one of the novels in the set however the 
results are surprising: the script has produced just one section 

break. Most students feel that this result is “wrong.” “Oh 
wow! That’s it?” “I think it didn’t even go through the file.” 
“Just one quotation mark?” To see what went wrong, 
students scroll through the chosen novel, glancing through 
the first twenty paragraphs or so. Upon inspection, they 
conclude that there is nothing wrong with their script. It is 
just that this particular novel actually does not have any 
quotes in it. (The single quotation mark that the script 
encountered was the result of an optical character recognition 
error.) This leads to a discussion of differences in writing 
styles between authors. A couple of students mention how 
some authors don’t use quotation marks, but instead a series 
of hyphens (-) to mark the beginning and end of character 
quotes. This raises a new problem. Is it safe to use quotation 
marks as proxies for character quotes, or should the script 
also look for hyphens? Are there still other variations that 
students will need to account for? 

Out of curiosity, the students randomly open a few files to 
manually search for hyphens. Some authors are indeed using 
them in place of quotation marks: 

------Except dimity, ------ replied my father. 

Others, however, are using them to mark incomplete 
sentences: 

But ‘tis impossible, ---- 

In some cases, hyphens have resulted because em-dashes (—
) or en-dashes (–) were converted to hyphens by the optical 
character recognition system: 

Postscript--I did not tell you that Blandly… 

It is now clear to the students that if hyphens sometimes mark 
speech, they are less robust than quotation marks as proxies 
for character quotes. They decide to use only quotation 
marks for the remainder of the exercise to keep things 
“relatively simple.”  

It is now time to choose another novel to test the script. This 
time, the choice is not so random, as students want a novel 
that has many character quotes as a “good” sample or test 
case. The script is changed such that it now parses the text of 
all the novels, returning a list of novels along with the 
number of sections produced in each novel. These range 
from 0 to ~600. Since there are no pre-defined expectations 
for number of quotes in a novel, there is no way to just look 
at these numbers and know if they are accurate. However, 
some students still feel that something has gone “wrong.” 
They argue that because every quote needs two quotation 
marks, the total number of “correct” quotation marks in a 
novel should be an even number. By the same logic, the 
number of sections produced on this basis should also be 
even. But the result returned shows odd numbers for almost 
half the novels. Students open some of these “wrong” novels 
to manually search for quotation marks. After trying this out 
on five different novels, they are puzzled. The novels do have 
an even number of quotation marks in them. Why then is the 
script returning odd numbers? 



It does not take long to identify the problem. The students 
are right in pointing out that the number of quotation marks 
in a novel should be even. However, they have misconstrued 
how the script creates sections in a novel. A student explains 
this by reference to one of the novel’s in the set: Ann 
Radcliffe’s The Mysteries of Udolpho. In the passage below, 
the python script will go through the text inserting four 
section breaks: 

She discovered in her early years a taste for works of 
genius; and it was St. Aubert's principle, as well as his 
inclination, to promote every innocent means of 
happiness. <>“A well-informed mind, <>” he would 
say, <>“is the best security against the contagion of 
folly and of vice.”<> The vacant mind is ever on the 
watch for relief, and ready to plunge into error, to 
escape from the languor of idleness. 

This example shows the students that they had been 
confusing sections with section-breaks. Although the script 
creates four section-breaks in the novel, the number of 
sections created by the script is actually five. The students 
realize that the number of sections will thus be one more than 
the count of quotation marks. Since these will always be 
even, the number of sections created by the script must 
always be odd. 

The problem has now reversed itself. Whereas earlier the 
participants believed that an odd number of sections was 
“wrong”, they now agree that having an odd number of 
sections is actually “right”. Why then, they puzzle, do some 
novels have an even number of sections? The participants 
manually check out a few “even” novels to search for 
quotation marks. They discover another set of optical 
character recognition errors, formatting issues, and variance 
in authors’ writing styles that is producing the “wrong” or 
unexpected result. At the conclusion of the workshop session 
shortly thereafter, the students still do not have a script that 
can reliably extract all character quotes in an automated way. 

There are many ways to explain what has happened here. 
One is to say that the novels were not in the “right” format – 
they had formatting issues, exhibited style inconsistencies, 
and contained typographical errors. This, however, is true for 
most, if not all, kinds of data that analysts have to deal with 
on a daily basis. Clean, complete, and consistent datasets – 
as every data analyst knows – are a theoretical fantasy. 
Outside of theory, data is often inconsistent and incomplete. 
The requirement of prim and proper datasets, we argue, does 
not do justice either to the reality of the data world or to the 
explanation of this workshop exercise. 

Another explanation is that the students simply lacked skill 
and experience, and were making what some would call 
“rookie mistakes”. After all, these students were here to learn 
these methods, and were not expected to know them 
beforehand. However, the ability to identify and avoid 
“rookie mistakes” is in itself an important artifact of the 
training and professionalization of would-be professionals. 

In large part, what makes a rookie a rookie is his/her inability 
to recognize and avoid these kinds of errors. As sites for 
learning and training, classrooms and workshops thus 
provide avenues for seeing how would-be professionals learn 
to “see” and avoid “rookie mistakes.” Similar if less stark 
examples of such mistakes appeared in the machine-learning 
class (using part of training data as a test case, confusing 
correlation for causation, etc.). 

Our workshop case brings together prior knowledge, human 
decisions, and empirical contingency. The choice of the 
dataset is not a given, but a compromise between thematic 
alignment and practical accessibility. Moreover, as seen in 
the case of vertical bars, hyphens, and quotation marks, data 
is often idiosyncratic in its own ways, necessitating situated 
and discretionary forms of pre-processing. Even clearly 
articulated computational routines (e.g., search for quotation 
marks, label text between marks as a section, count sections, 
put sections in a separate file) often require a host of situated 
decisions (e.g., what novels to look at, what stylistic 
elements to account for, how to alleviate formatting errors, 
how to infer and manage empirical contingency, etc.). In all 
these ways, algorithmically identifying and extracting 
character quotes is a situated activity that requires 
practitioners to find their way around specificities of the data 
at hand. 
DISCUSSION 
The cases above provide important insight into the practice 
and professionalization of would-be data analysts. In case 
one, we saw how machine learning students learn to see data 
in forms amenable to algorithmic manipulation, and an 
algorithm’s application as a collection of formal rule-like 
steps. The rules to be followed appear methodical, rigorous, 
and mechanical, and the algorithm is demonstrated using an 
abstract representational form: label-less dots on a name-less 
graph. Whether it is discerning the similarity between two 
dots or knowing ways to compare and merge clusters of dots, 
students learn to work with and organize the world through 
a fixed set of rules. Such a demonstration privileges an 
abstract understanding of data analytics, allowing students to 
learn to manipulate the world in predictable and actionable 
ways. This, we argue, is a great source of algorithmic 
strength: if the hallmark of real-world empirics is its richness 
and unpredictability, the hallmark of data analysis is its 
ability to organize and engage the world via abstract 
categorization and computationally actionable manipulation. 

In case two, by contrast, we saw how processes of learning 
and practicing data analysis are also situated, reflexive, and 
discretionary, in ways that abstract representations and 
mechanical demonstrations significantly understate. 
Multiple decisions were required to effectively combine the 
script with the given dataset ranging from identifying how to 
isolate character quotes, discerning ways in which quotes 
appear in data, to figuring out how to test the script. Unique 
datasets necessitate different fixes and workarounds, 
requiring a constant adjustment between prior knowledge, 



empirical contingencies, and formal methodologies. Making 
prior knowledge and abstract methods work with data is 
indeed hard work. Data may be hard to find, unavailable, or 
incomplete. Under such circumstances, practitioners have to 
make do with what they can get, in ways that go against the 
abstracted application story usually shared in data analytic 
research papers and presentations. 

Recognizing the incomplete nature of the abstracted data 
story helps situate an algorithm’s application as a site not 
only for abstract categorization and formal manipulation but 
also for discretion and creativity. Learning to apply an 
algorithm, as we saw, involves a series of situated decisions 
to iteratively, often creatively, adapt prior knowledge, data 
analytic routines, and empirical data to each other. Elements 
of creativity manifest themselves as professional acts of 
discretion in the use of abstract, seemingly mechanical 
methods. While certain datasets may share similarities that 
support mechanical applications of rules across contexts, 
mastery of operations in their mechanical form constitutes 
only one part of the professionalization of data analysts. Each 
dataset is incomplete and inconsistent in its own way, 
requiring situated strategies, workarounds, and fixes to make 
it ready and usable for data analysis. Data analysts are much 
like Suchman’s [33] problem solvers, Klemp et al.’s [22] 
musicians, and Ingold’s [17] carpenters: constantly 
negotiating with and working around established routines in 
the face of emergent empirical diversity. 

Viewing data analysis as an ongoing negotiation between 
rules and empirics helps mark a clear distinction between 
two ways of describing the professionalization and practice 
of data analytics that are relevant for CSCW and HCI 
researchers. One of these approaches data analytics as a rule-
bound practice, in which data is organized and analyzed 
through the application of abstract and mechanical methods. 
Casting data analytics as a rule-bound practice helps make 
visible specific aspects of data analytic learning and practice. 
First, it allows data analysts to better understand the abstract 
nature of data analytic theories, facilitating novel ways of 
computationally organizing and manipulating the world. 
Second, it enables researchers to focus on constraints and 
limits of algorithmic analyses, providing a detailed look at 
some of the critical assumptions underlying data analyses. 
Finally, it allows students to learn not only how to work with 
basic, yet foundational, data analytic ideas, but also how to 
organize and manipulate the world in predictable and 
actionable ways. However, the same properties that make 
these aspects visible, tend to render in-visible the empirical 
challenges confronting efforts to make algorithms work with 
data, making it difficult to account for the situated, often 
creative, decisions made by data analysts to conform 
empirical contingency to effective (and often innovative) 
abstraction. What’s left is a stripped down notion of data 
analytics – analytics as rules and tools – that only tells half 
the data analytic story, understating the breadth and depth of 
human work required to make data speak to algorithms. 
Significantly underappreciating the craftsmanship of data 

analysts, the rule-bound perspective paints a dry picture of 
data analysis – a process that often comprises of artful and 
innovative ways to produce novel forms of knowledge. 

A more fruitful way to understand data analytics, we argue, 
is to see it not as rule-bound but rather as rule-based: 
structured but not fully determined by mechanical 
implementations of formal methods. In a rule-bound 
understanding, an algorithm’s application requires 
organization and manipulation of the world through abstract 
constructs and mechanical rules. In a rule-based 
understanding, however, emergent empirical contingencies 
and practical issues come to the fore, reminding us that the 
world requires a large amount of work for it to conform to 
high-level data analytic learning, expectations, and analyses. 
Following Feldman & Pentland’s [14] view of routines, a 
rule-based understanding of data analysis casts algorithms as 
ostensive as well as performative objects, highlighting how 
the performances of algorithms draw on and feed into their 
ostensive nature, and vice versa. 

Seeing data analytics as a rule-based practice focuses our 
attention on the situated, discretionary, and improvisational 
nature of data analytics. It helps make salient not only the 
partial and contingent nature of the data world (i.e., data is 
often incomplete and inconsistent), but also the role of 
human decisions in aligning the world with formal 
assumptions and abstract representations of order as 
stipulated under abstract algorithmic methods and theories. 
Data analysis is a craft, and like every other form of craft it 
is never fully bound by rules, but only based on them. A rule-
based understanding of data analysis acknowledges and 
celebrates the lived differences between theoretical reality, 
empirical richness, and situated improvisations on the part of 
data analysts. 

It is in and through these lived differences that data analysts 
gain data vision. As with Dewey’s [12], Cohen’s [9], and 
Feldman & Pentland’s [14] descriptions of routines and 
routinized tasks, we see in data vision the always-ongoing 
negotiation between abstract algorithmic “routines” and the 
situated and reflexive “applications” of such “routines.” Data 
vision is much like an array of plans, takes, and mis-takes 
[22] – a constant reminder of the situated and discretionary 
nature of the professionalization and practice of data 
analysis.  

Such an understanding of data vision can inform data 
analytic learning, research, collaboration, and practice in 
three basic ways. First, it helps focus attention on the role of 
human work in the professionalization and practice of data 
analytics; while models, algorithms, and statistics clearly 
matter, focusing on situated and discretionary judgment 
helps contextualize algorithmic knowledge, facilitating a 
better understanding of the mechanics, exactness, and limits 
of such knowledge. Algorithms and data don’t produce 
knowledge by themselves. We produce knowledge with and 
through them. The notion of data vision puts humans back in 
the algorithm. 



Second, data vision can help us better attend to the ways in 
which algorithmic results are documented, presented, and 
written up. Although algorithmic and statistical choices 
constitute a significant part of data analytic publications, also 
providing an explicit description of key decisions that data 
analysts take can not only help communicate a nuanced 
understanding of technical choices and algorithmic results, 
but also enable students as well as practitioners to think 
through aspects of their work that though may seem “non-
technical,” greatly impact their knowledge claims. This helps 
to not only reduce the “opacity” [8] of data analytic practices, 
but also better teach and communicate, what some call, the 
“black art” or “folk knowledge” [13] of data analysis, 
contributing to the development of a complete and 
“reflective practitioner” [31]. 

Third, better understanding of data vision can help inform 
both professional training and community conversations 
around data analysis. In data analytics, and in many other 
forms of research (including our own!), we often present 
research setup, process, and results in a dry and 
straightforward manner. We had a question, we collected this 
data, we did this analysis, and here is the answer. Open and 
effective conversations about the messy and contingent 
aspects of research work – data analytic or otherwise – tend 
to escape the formal descriptions of methods sections and 
grant applications, reserved instead for water cooler and 
hallway conversations by which workarounds, ‘tricks of the 
trade’, and ‘good enough’ solutions are shared. The result is 
an excessively “neat” picture that fails to communicate the 
real practices and contingencies by which data analytic work 
proceeds. This becomes even more difficult outside the 
classroom. In industry, research centers, and other contexts 
of algorithmic knowledge production, data analysts often 
work with huge volumes of data in multiple teams, 
simultaneously interfacing with a host of other actors such as 
off-site developers, marketers, managers, and clients. Where 
the results of data analytics meet other kinds of public 
choices and decisions (think contemporary debates over 
online tracking and surveillance, or the charismatic power of 
New York Times infographics) these complications – and 
their importance – only multiply. Data analytic results often 
travel far beyond their immediate contexts of production, 
taking on forms of certainty and objectivity (even magic!) 
that may or may not be warranted, in light of the real-world 
conditions and operations from which they spring. Here as in 
other worlds of expert knowledge, “distance lends 
enchantment” [10]. 

More broadly, an understanding of data vision helps support 
the diverse forms of oft-invisible collaborative data analytic 
work. Data analysis not only warrants algorithmic techniques 
and computational forms, but also comprises answers to 
crucial questions such as what is the relation between data 
and question, what can actually be answered through data, 
what are some of the underlying assumptions concerning 
data, methods, etc. By bringing such questions – and, indeed, 
other forms of human work – to the fore, data vision directs 

our attention to forms of situated discretionary work enabling 
and facilitating data analysis. Data are never “raw” [15], and 
a large amount of work goes into making data speak for 
themselves. The notion of data vision can help us to identify 
and build acknowledgment and support mechanisms for 
sharing such folk knowledge that, though immensely useful, 
is often lost. Data vision is not merely about perceiving the 
world, but a highly consequential way of seeing that turns 
perception into action. Data often speak specific forms of 
knowledge to power. Like all forms of explanation, data 
analysis has its own set of biases [3, 15], assumptions [4, 7, 
34], and consequences [4, 5, 6]. Understanding data vision 
allows us to better delineate and communicate the strengths 
as well as the limitation of such collaborative knowledge – 
indeed, of seeing the world with and through data. 

CONCLUSION 
Given our growing use of and reliance on algorithmic data 
analysis, an understanding of data vision is now integral to 
contemporary knowledge production practices, in CSCW 
and indeed many other fields. In this paper we presented two 
distinct, yet complementary, ways of learning and practicing 
data analysis. We argued in favor of a rule-based, as opposed 
to a rule-bound, understanding of data analytics to introduce 
the concept of data vision – a notion that we find integral, if 
not foundational, to the professionalization and practice of 
data analysts. We described how a better understanding of 
data vision allows us to better grasp and value the intimate 
connection between methodological abstraction, empirical 
contingency, and situated discretion in data analytic practice. 
Shedding light on the diverse forms of data analytic work, 
data vision produces a more open and accountable 
understanding of algorithmic work in data analytic learning 
and practice. 

Studying learning environments helps showcase basic, yet 
formative, aspects in the training and professionalization of 
data analysts. In this paper, using empirical examples from 
classrooms and workshops, we have described not only a 
rule-based view of data analysis, but also the outline of the 
notion and practice of data vision. Studying learning 
environments, however, has its limitations. Classrooms are 
but one step in the professionalization of data analysts. Data 
analysis, like all practices, is a constant learning endeavor. 
To better understand data analytic practice, we then need to 
also study other contexts of algorithmic knowledge 
production such as those in industry, research centers, 
startups, and even hackathons. Acting as avenues for future 
research, diverse contexts of data analyses provide 
opportunities to further and strengthen our understanding of 
data vision. In different contexts, data analysis is shaped by 
a diverse set of professional expectations and organizational 
imperatives, reminding us that the practice of data analysis 
remains a deeply social and collaborative accomplishment. 
This paper has suggested early steps in defining and 
understanding data vision. Future work will seek to extend 
and deepen this holistic approach. 
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